

 $\begin{array}{l} \text{Universal Set} \\ U = \{white, black, red, yellow, green, blue\} \\ A = \{red, blue, yellow\} \\ B = \{red, white, blue\} \end{array}$

$A\cap \overline{B}$

What is in A, but not B?

{yellow}

$$P(11, 4) =_{11} P_4 = 11 * 10 * 9 * 8$$
$$= 7,920$$
$$C(8,3) =_8 C_3 = \frac{8 * 7 * 6 * 5!}{3 * 2 * 5!}$$
$$= 8 * 6 = 56$$

If you have a fair six-sided die, what is the probability of rolling a number that is odd or greater than 3 ?

How many poker hands can be made (i.e., how many groupings of 5 cards from a deck of 52)? $\binom{52}{} = {}_{52}C_5$

$$\binom{5}{5} = \frac{52C_5}{5!47!} = 2,598,960$$

$$\frac{Probability of a Royal Flush?}{=} \frac{4}{2,598,960} = \frac{1}{649,740}$$

II a	Tair coin	i is tosse	a 6 times,	
	what is t	the prob	ability	
th	at you g	et heads	3 times?	
$_{6}C_{3}$	20	5		
26	$=\frac{1}{64} =$	$=\frac{1}{16} or$.	3125	
20 WA	ys? The 3 hea	ds by which	toss:	
123	234	345	456	
124	235	346		
125	236	356		
126	245			
134	246			
135	256			
136				
145				
146				
156				

A fair six-sided die is tossed 3 times. What is the probability that a three would be rolled at least once?

That is, Rolling a "3" 1, 2 or 3 times....seems complicated

Isn't this the opposite of never tossing a 3?

P(1,2, or 3) = 1 - P(never)

ways not a 3	5	5	5	$1 - \frac{3^{\circ}}{3^{\circ}} = \frac{9}{34}$
possible	6	6	6	6^3 21

A classroom of 25 has 10 blond girls, and 13 boys. If there are 15 blonds, what is the probability that a randomly chosen student is a non-blond boy?

A secretary types four letters to four people and addresses the four envelopes. If she inserts the letters at random, each in a different envelope, what is the probability that exactly two letters will go into the right envelope?

Let the number be the letter, the position the envelope For example, letter 1 in envelope 1, etc.: 1234

4!=24 permutations

1243 -2*	2143 -0	3142 -0	4132 - 1	
1342 -1	2314 -1	<mark>3214 -2*</mark>	4213 - 1	
1324 -2*	2341 -0	3241 -1	<mark>4231 - 2*</mark>	(1
1423 -1	2413 -0	3412 -0	4312 - 0	0/24=.25
1432 -2*	2431 -1	3421 -0	4321 - 0	

A 100 point exam has 11 problems. If each question is worth at least 5 points, and fractions of a point are not possible, how many ways can you assign points to the 11 problems?

If each must have 5 points there are 100-5*11, or 45 points to "divvy up"

WARNING! trickiness!! we can choose to give a problem. zero more points!

Partitioning Technique

Each point has a place, and each partition has a place

A simple example:

5 fish, divvied up among 3 dolphins, zero is a possibility for a naughty dolphin.

Make 7 boxes [why 7? 5+(3-1)=7]

A non point exam has 11 problems. If each question is worth at least 5 points, and factions of a point are not possible, how many bays can you assign points to the 11 problems?
If each must have 5 points there are
$$100-5*11$$
, or 45 points to "divvy up"
How many boxes? $45 + (11 - 1) = 55$
 $55C_{10} = \frac{55!}{10!45!} = 29,248,649,430$