Values of Trig Functions for Common Angles:

		₽	
0°	$\sin \theta$	$\cos \theta$	$\tan \theta$
0			
$\pi/6$			
$\pi/4$			
$\pi/3$			
$\pi/2$			
π			

Careful with Trig Values:
$$\tan\left(\frac{3\pi}{4}\right) = -1$$
 but $\arctan(-1) = -\frac{\pi}{4}$
 $\sin^2 \theta + \cos^2 \theta = 1$ $1 + \tan^2 \theta = \sec^2 \theta$ $1 + \cot^2 \theta = \csc^2 \theta$
 $\sin^2 \theta = \frac{1 - \cos 2x}{2}$ $\cos^2 \theta = \frac{1 + \cos 2x}{2}$

Limits

Limits to know:

$$\lim_{x \to 0} \frac{\sin x}{x} = \lim_{x \to 0} \frac{1 - \cos x}{x} = \lim_{n \to \infty} \left(1 + \frac{1}{n}\right)^n =$$

Situations Limits Fail to Exist

- 1) _____
- 3)

Definition of Continuity:

A function is continuous at the point x = c if and only if:

- 1) _____

Intermediate Value Theorem

- 1) _____
- 2) _____
- 3) _____
- 4) Must be .

Derivatives

FORMAL Definition of Derivative

$$\frac{d}{dx}(f(x)) = \underline{\hspace{1cm}}$$

Alternate Form of Definition of a Derivative

$$\frac{d}{dx}(f(x))$$
 at $x = c$ is —

Product Rule

$$\frac{d}{dx}(f(x)g(x)) = \underline{\hspace{1cm}}$$

Ouotient Rule

Quotient Rule
$$\frac{d}{dx} \left(\frac{f(x)}{g(x)} \right) = \frac{1}{1 + \frac{1}{2}}$$

Chain Rule

$$\frac{d}{dx}(f(g(x))) = \underline{\hspace{1cm}}$$

Situations Derivatives Fail to Exist

- 1) ____
- 3) _____

Derivatives

Where u is a function of x and c is a constant

$$\frac{d}{dx}(\sin u) = \underline{\qquad} \frac{d}{dx}(\csc u) = \underline{\qquad}$$

$$\frac{d}{dx}(\cos u) = \underline{\qquad} \frac{d}{dx}(\sec u) = \underline{\qquad}$$

$$\frac{d}{dx}(\tan u) = \underline{\qquad} \frac{d}{dx}(\cot u) = \underline{\qquad}$$

$$\frac{d}{dx}(e^u) = \underline{\qquad} \frac{d}{dx}(\ln u) = \underline{\qquad}$$

$$\frac{d}{dx}(a^u) = \underline{\qquad} \frac{d}{dx}(\log_a u) = \underline{\qquad}$$

$$(f^{-1})'(a) =$$

$$\frac{d}{dx}(\sin^{-1}u) = \underline{\qquad} \frac{d}{dx}(\csc^{-1}u) = \underline{\qquad}$$

$$\frac{d}{dx}(\cos^{-1}u) = \frac{d}{dx}(\sec^{-1}u) = \frac{1}{dx}(\sec^{-1}u)$$

$$\frac{d}{dx}(\tan^{-1}u) = \underline{\qquad} \frac{d}{dx}(\cot^{-1}u) = \underline{\qquad}$$

Curve Sketching and Analysis

Critical Values: $\frac{dy}{dx} =$ ____OR____

Absolute/Global Max or Min: Test

Local/Relative MINIMUM

If f' = 0 changes from _____ to ____ OR $\frac{d^2y}{dx^2}$ 0

Local/Relative MAXIMUM

If f' = 0 changes from ____ to ____

Stuff You Must Know Cold for AP Test

Point of Inflection	Integration	
1) If $f''(c) = \underline{\qquad}$ or $f''(c) = \underline{\qquad}$ does not exist AND	Where u is a function of x and c is a constant	
CAIST ATTD	$\int \cos u \ du = \underline{\qquad} \int \sin u \ du = \underline{\qquad}$	
2) if $f''(x)$ changes from to	$\int \sec^2 u \ du = \underline{\qquad} \int \csc^2 u \ du = \underline{\qquad}$	
or to at $x = c \underline{\mathbf{OR}}$ if $f'(x)$	$\int \sec u \tan u \ du = \underline{\qquad} \int \csc u \cot u \ du = \underline{\qquad}$	
changes from to or		
to at $x = c$	$\int \tan u \ du = \underline{\qquad} \int \cot u \ du = \underline{\qquad}$	
	$\int \sec u \ du = \underline{\qquad} \int \csc u \ du = \underline{\qquad}$	
Extreme Value Theorem	$\int \frac{du}{u} = \underline{\qquad} \int e^u \ du = \underline{\qquad}$	
If $f(x)$ is on $[a,b]$, then there	_	
exists both a and	$\int a^u \ du = \underline{\qquad} \int \frac{du}{\sqrt{a^2 - u^2}} = \underline{\qquad}$	
The Mean Value Theorem (derivatives) Slope of secant line = Slope of tangent line =	$\int \frac{du}{a^2 + u^2} = \underbrace{\int \frac{du}{u\sqrt{u^2 - a^2}}}_{\text{Riemann's Sum:}} = \underbrace{\int \frac{du}{u\sqrt{u^2 - a^2}}}_{\text{Riemann's Sum:}}$	
Must be and	$\int_{a}^{b} f(x)dx = \underline{\qquad} \text{ or } A = bh$	
Particle Motion	$\lim_{n\to\infty}\sum_{k=1}^{n}a_{k}=$ (Sigma equation)	
Position = Velocity =	$n \to \infty$ $k=1$ Trapezoidal Sum:	
Speed = Acceleration =	$\int_{a}^{b} f(x)dx = \underline{\qquad} \text{or } A = \frac{h(b_1 + b_2)}{2}$	
Displacement =	1st Fundamental Theorem of Calculus	
Total Distance travelled =	$\int_a^b f'(x) \ dx = \underline{\hspace{1cm}}$	
Speed of object increasing when signs	Average Value of $f(x)$ on $[a,b]$:	
Speed of object decreasing when		

have signs

and

1	17	4 1		c		
zna	runas	amentai	Theorem	01	Cal	icuius

$$\frac{d}{dx}\int_{a}^{x}f(t)dt = \underline{\hspace{1cm}}$$

2nd Fundamental Theorem (Chain Rule):

$$\frac{d}{dx} \int_{g(x)}^{h(x)} f(t) dt = \underline{\hspace{1cm}}$$

Euler's Method:

Given that $\frac{dy}{dx} = f(x, y)$ and solution passes

through (x_0, y_0) :

Logistic Differential Growth Equation:

$$\frac{dP}{dt} =$$

Logistic Differential Growth Equation:

P =		
1 —		

Solids of Revolution

Area between two curves:

Disk: _____ Washer: ____

Volume by Cross Sections: _____

oquares.	isosecies Triangle.
Semicircles:	Equilateral Triangle:

Arc Length (Perimeter)

$$S = \int_a^b \underline{\hspace{1cm}}$$

Pythagorean Identities

$$\cos^2 x = \frac{1 + \cos(2x)}{2}$$
$$1 - \cos(2x)$$

$\sin^2 x = \frac{1 - \cos(2x)}{2}$

L'Hôpital's Rule

If
$$\frac{f(a)}{g(b)} = --- OR ----,$$

then
$$\lim_{x \to a} \frac{f(x)}{g(x)} = \lim_{x \to a}$$

Integration by Parts

Integration of ln

$$\int \ln x \, dx = x \ln x - x + C$$

In Polar Curves

$$x = \underline{\hspace{1cm}}$$
 and $y = \underline{\hspace{1cm}}$

Slope of Polar Curve

$$\frac{dy}{dx} =$$

Area within a Polar Curve

$$A =$$

Slope of a Parametric Equation

$$\frac{dy}{dx} =$$

Velocity Vector
$$\langle ---, --- \rangle$$

Speed

$$\|v\| = \underline{\hspace{1cm}}$$

Total Distance

$$\int_{\text{inital time}}^{\text{final time}} |v(t) dt| = \underline{\hspace{1cm}}$$

Geometric Series: $\sum_{n=0}^{\infty} ar^n$

$$a + ar + ar^{2} + ar^{3} + ... + ar^{n-1} + ... = \sum_{n=0}^{\infty} ar^{n}$$

The series CONVERGES if:

The series DIVERGES if:

Sum: _____

Nth Term Test: $\sum_{n=1}^{\infty} a_n$

It DIVERGES if:

If the limit approaches 0, test is _____

(Test cannot be used to show convergence and converse is not true)

Ratio Test:
$$\sum_{n=0}^{\infty} ar^n$$

It CONVERGES if:

It DIVERGES if:

If the limit equals to 1, test is

Root Test: $\sum_{n=1}^{\infty} a_n$

It CONVERGES if:

It DIVERGES if: _____

If the limit equals to 1, test is _____

Telescoping Test: $\sum_{n=1}^{\infty} (b_n - b_{n+1})$

It CONVERGES if it is expanded form and terms begin to "_____" out.

(Test cannot be used to show divergence.

Infinite sum is the sum of the first few terms that do not subtract out.)

Stuff You Must Know Cold for AP Test - Calculus BC (Rev 2017-18)

p-Series Test: $\sum_{n=1}^{\infty} \frac{1}{n^P}$

The series CONVERGES if:

The series DIVERGES if: _____

If p = 1, then it is ______.

Integral Test: $\sum_{n=1}^{\infty} a_n$ where $a_n = f(n) \ge 0$

It CONVERGES if:

It DIVERGES if: _____

Remainder: $0 < R_n < \int_{r}^{\infty} f(x) dx$

Direct Comparison (a_n,b_n) **Test:** $\sum_{n=1}^{\infty} a_n$

It CONVERGES if $0 < \underline{\hspace{1cm}} \le \underline{\hspace{1cm}}$ and

It DIVERGES if $0 < \underline{\hspace{1cm}} \le \underline{\hspace{1cm}}$ and

(Note: $a_n > 0$ and $b_n > 0$)

Limit Comparison (a_n, b_n) **Test:** $\sum_{n=1}^{\infty} a_n$

It CONVERGES if $\lim_{n\to\infty} \frac{a_n}{b_n} = L$ where _____

It DIVERGES if $\lim_{n\to\infty} \frac{a_n}{b_n} = L$ where _____

(Note: $a_n > 0$ and $b_n > 0$ and L must be finite)

Alternating Series Test: $\sum_{n=1}^{\infty} (-1)^{n-1} a_n$

The series CONVERGES if: _____ and

(This test cannot be used to test for divergence)

Alternating Series Remainder

If $S_n = \sum_{k=1}^{n} (-1)^n a_n$ is the nth partial sum of a convergent alternating series, _____.

LaGrange's Error Bound:

If c equals a number centered on an x equals a value, approximate. There exists a z between x and c, such that:

$$|R_n| \leq -----$$

Find interval of $f^{n+1}(z)$ to find error interval.

Taylor Polynomial

If the function f has n derivatives at x = c, then the polynomial's equation for the nth term is:

$$P_n(x) = \underline{\hspace{1cm}}$$

Taylor Series

If function f is "smooth" at x = c, then f can be approximated by the nth degree polynomial

$$f(x) = \underline{\hspace{1cm}}$$

Maclaurin Series:

A Taylor Series about x = 0 is called Maclaurin.

$$e^x = \underline{\hspace{1cm}}$$

$$\cos x =$$

$$\sin x =$$

$$\frac{1}{1-x} \approx \underline{\hspace{1cm}}$$

$$\ln(x+1) = \underline{\hspace{1cm}}$$