<u>Stuff You Must Know Cold – Calc BC</u>

Limits	Derivatives	More Derivatives
	Definition of Derivative	Where μ is a function of x and a is a
line f(a) anista if .	d	constant
$\lim f(x)$ exists if :	$\frac{u}{-1}(f(x)) =$	function derivative
$x \rightarrow a$	dx	x ⁿ
_		sinu
_	Alternate Form of Def. of Derivative	
Theorems:	d (c ())	
	$\frac{1}{dx}(f(x)) at x = a$	
$\lim_{n\to\infty}\frac{\sin x}{2} =$	dx	CSC U
$x \rightarrow 0$ X		sec u
$1 - \cos r$		cot u
$\lim_{x \to 0} \frac{1 - \cos x}{x} =$		arcsin u
x	Equation of a tangent line at $x=a$	
Steps:		
1.		arccos u
2.		
3.	Chain Rule	
Definition of Continuity		arctan u
A function is continuous at the point	f(g(x))	
x=a if and only if:		
	Product Rule	arccsc u
1.		
2.	f·g	
		arcsec u
3.	Ouotient Rule	
Vertical Asymptotes:	f	arccot u
$\lim f(x) =$		
$x \rightarrow c$	g	
from either side of c.		e ^u
<i>y</i>	Curve Sketching and Analysis	
	Critical Points	
Horizontal Asymptotes:	Increasing:	
1 $(())$	Decreasing:	
$\lim_{x \to \infty} f(x) =$		a^{u}
$x \rightarrow \pm \infty$	Polativo Min	
		$\log_a u$
Intermediate Value Theorem		
		Derivative of an Inverse
	Relative Max:	
		(a,b) on f(x)
		$g(x) = f^{-1}(x)$
	Absolute Extrema:	g'(b) =
Extreme Value Theorem	Check endpoints! Candidates test or	
	giobal algument.	
	Concave Up:	The Mean Value Theorem
		(derivatives)
	Concave Down:	
	Point of Inflection:	
Rolle's Theorem		
	1	1

Name:

Stuff You Must Know Cold – Calc BC

	<u>Solids of Revolution</u> Disk Method
∞,	Washer Method
	Arc Length (rectangular)
	(parametric)
	(polar)
	$\frac{Parametric Equations}{dx} =$
	$\frac{d^2 y}{dx^2} =$
	Distance, Velocity, and Acceleration s(t) is the position function, < x(t), y(t) > is the position vector
	velocity =
	acceleration =
	speed = =
•	velocity vector =
<u>•</u>	acceleration vector =
	Speed is increasing
	position=
	Total distance
	average velocity =

Stuff You Must Know Cold - Calc BC

Series Convergence Flowchart

