Chapter 5 Check List:

1 Definition of Natural Log Function (p. 314)
2 Natural Log Properties (pp. 315-316)
3 Derivative of the Natural Logarithmic Function (p. 318)
$4 \ldots \ldots \quad \frac{d}{d x}[\ln |u|]=\frac{u^{\prime}}{u}($ p. 320)
$5 \ldots \ldots \quad \int \frac{u^{\prime}}{u} d x=\ln |u|+C($ p.324 $)$
6 Integrals of the 6 Basic Trig Functions (p. including
$\int \tan u d u=-\ln |\cos u|+C$
$\int \cot u d u=\ln |\sin u|+C$
$\int \sec u d u=\ln |\sec u+\tan u|+C$
$\int \csc u d u=-\ln |\csc u+\cot u|+C$
7 Derivative of an Inverse Function (p. 337)
If $f(g(x))=x, g^{\prime}(x)=\frac{1}{f^{\prime}(g(x))}$
8 Def. of Natural Exponential Function (p. 342)
9 Properties if e^{x} (p 343)
$10 \ldots \ldots \quad \frac{d}{d x}\left[e^{u}\right]=e^{u} \cdot u^{\prime}($ p. 344)
11..... $\int e^{u} d u=e^{u}+C$ (p.346)

12 Def. of Exp and Log with Base a :
$a^{x}=e^{(\ln a) x}(\mathrm{p} .352)$
$\log _{a} x=\frac{1}{\ln a} \ln x$ (p. 353)
13 Properties if Inverse Functions (p 353)
$14 \ldots \ldots \cdot \frac{d}{d x}\left[a^{u}\right]=(\ln a) a^{u} \cdot u^{\prime}($ p. 354)
$15 \ldots \ldots \quad \frac{d}{d x}\left[\log _{a} u\right] d u=\frac{u^{\prime}}{(\ln a) u}(\mathrm{p} .354)$
$16 \ldots . . \quad \int a^{u} d u=\frac{a^{u}}{(\ln a)}+C(\mathrm{p} .355)$
$17 \ldots \ldots \quad \frac{d}{d x}\left[u^{n}\right]=n u^{n-1} u^{\prime}$ (p. 355)
$18 \ldots \ldots \lim _{x \rightarrow \infty}\left(1+\frac{1}{x}\right)^{x}=e($ p. 356)
19 If $\lim _{x \rightarrow c} \frac{f(x)}{g(x)}=\frac{0}{0}$ or $\frac{\infty}{\infty}$, then by L'Hôpital's Rule $\lim _{x \rightarrow c} \frac{f(x)}{g(x)}=\lim _{x \rightarrow c} \frac{f^{\prime}(x)}{g^{\prime}(x)}$ (p. 363)

20 Page 376:
$\frac{d}{d x}[\arcsin u]=\frac{u^{\prime}}{\sqrt{1-u^{2}}}$
$\frac{d}{d x}[\arctan u]=\frac{u^{\prime}}{1+u^{2}}$
21 Page 382
$\int \frac{1}{\sqrt{a^{2}-u^{2}}} d u=\arcsin \frac{u}{a}+C$
$\int \frac{1}{a^{2}+u^{2}} d u=\frac{1}{a} \arctan \frac{u}{a}+C$
22 Summary of Basic Derivatives page 378
23 Summary of Basic Integrals page 385

Delta Math Check List:

1 6 Practice Assignments and HW quizzes.

Khan Academy Check List:

1 Derivatives of e^{x} and $\ln x$
2 Derivatives of $\tan (x), \cot (x), \sec (x)$, and $\csc (x)$
3 Derivatives of Inverse functions
4 Derivatives of Inverse Trig functions
5 Indefinite integrals: $e^{x} \& 1 / x$
6 Integration Using Long Division
7 Integration using completing the square

1. Find the derivative
(a) $f(x)=e^{2 \ln (3 x+1)}$
(b) $f(x)=5 x^{-2}-[\ln \cos x-\ln (\sin x+x)]$
(c) $f(x)=\frac{e^{x}+9}{e^{x^{2}}-x^{4}}$
(d) $f(x)=\ln \left(2 x^{2}+1\right)$
(e) $y=x^{\sqrt{2}}$
(f) $y=x^{x}$
(g) $f(x)=\frac{\sec x}{x}$
(h) $\ln y+x y^{2}-4 x^{3}+10=3 x$
(i) $f(x)=\left(x^{2}+6\right) \ln (3 x)$
(j) $f(x)=\cot x$
(k) $y=x^{\tan x}$
(l) $y=\cos x(\tan x-\sec x)$
(m) $f(x)=3^{4 x}$
(n) $f(t)=\frac{3^{2 t}}{t}$
(o) $y=\log _{5} \frac{x^{2}-1}{x}$
(p) $g(t)=\log _{2}\left(t^{2}+7\right)^{3}$
2. Evaluate the integral.
(a) $\int e^{\sec 2 x} \sec 2 x \tan 2 x d x$
(b) $\int \sec y(\tan y-\sec y) d y$
(c) $\int e^{3 x} d x$
(d) $\int \tan ^{2} x+1 d x$
(e) $\int \frac{(\ln x)^{2}}{x} d x$
(f) $\int \frac{x}{\sqrt{2 x-1}} d x$
(g) $\int \frac{1}{3 x+2} d x$
(h) $\int \cot x d x$
(i) $\int \frac{12}{1+9 x^{2}} d x$
(j) $\int \frac{1}{\sqrt{-x^{2}-4 x}} d x$ Hint: Complete the square
(k) $\int \frac{e^{2 y}}{1-e^{2 y}} d y$
(l) $\int \frac{e^{3 x}-2 e^{x}+5}{e^{2 x}} d x$
(m) $\int 2^{x} d x$
(n) $\int_{1}^{3} 4^{x+1}+2^{x} d x$
(o) $\int_{1}^{3} \frac{e^{3 / x}}{x^{2}} d x$
(p) $\int_{0}^{\sqrt{2}} \frac{1}{\sqrt{4-x^{2}}} d x$
(q) $\int_{-2}^{3} \frac{1}{x^{2}+4 x+8} d x$ Hint: Complete the square
(r) $\int_{0}^{\pi / 2} \frac{\cos x}{2^{\sin x}} d x$
3. Evaluate the limits, using L'Hôpital's Rule if necessary. If you do, remember to identify if it is $\frac{0}{0}$ or $\frac{\infty}{\infty}$ form and state that you are using L'Hôpital's Rule.
(a) $\lim _{x \rightarrow-3} \frac{3 \sin (2 x+6)}{3+x}$
(b) $\lim _{x \rightarrow 3} \frac{3 \ln (4-x)}{x-3}$
(c) $\lim _{x \rightarrow \infty} \frac{\arctan x}{3}$
(d) $\lim _{x \rightarrow 2} \frac{x^{2}-4}{x+2}$
(e) $\lim _{x \rightarrow \infty} \frac{\ln x^{2}}{(\ln x)^{2}}$
(f) $\lim _{x \rightarrow \infty} \frac{\ln 6 x}{\ln 2 x}$
4. The graph of the function f is shown below. Determine the value of $\lim _{x \rightarrow 2} \frac{f(2 x)+2}{5 x-10}$

5. Find an equation of the tangent line to $y=5^{x-2}$ at the point $(2,1)$
6. If $f(x)=\int_{\arctan x}^{2} 7^{t} d t$, then find $f^{\prime}(x)$. (Hint: FTC2 and the chain rule)
7. (Calculator Active) The weight (in grams) of a bacterial culture at time t (hours) is modeled by the function

$$
W(t)=\frac{1.25}{1+0.25 e^{-0.4 t}}
$$

for time $t \geq 0$
(a) Find the weight after 1 hour.
(b) Find the rate at which the weight is increasing after 2 hours.
8. (Calculator Active) At what point (x, y) on the graph of $y=2^{x}-3$ does the tangent line have slope 21?
9. (No Calculator) A particle moves along the x axis so that at any time $t>0$ its velocity is given by $v(t)=t \ln t-t$ At time $t=1$, the position of the particle is $x(1)=6$.
(a) Write an expression for the acceleration of the particle.
(b) For what values of t is the particle moving right?
(c) What is the minimum velocity of the particle. Justify your conclusion.
(d) If $\int t \ln t-t d t=\frac{1}{4} t^{2}(2 \ln t-3)+C$, write an expression of the position $x(t)$ of the particle.
10. (No Calculator) Let $f(x)=e^{x} \cos x$.
(a) (1 point) Find the average rate of change of f on the interval $0 \leq x \leq \pi$.
(b) (2 points) What is the slope of the line tangent to the graph of f at $x=\frac{3 \pi}{2}$?
(c) (3 points) Find the absolute minimum value of f on the interval $0 \leq x \leq 2 \pi$. Justify your answer.
(d) (3 points) Let g be a differentiable function such that $g\left(\frac{\pi}{2}\right)=0$. The graph of g^{\prime}, the derivative of g, is shown below. Find the value of $\lim _{x \rightarrow \frac{\pi}{2}} \frac{f(x)}{g(x)}$

Graph of g^{\prime}

