Last updated 3/3/22

1. Let $f(x)=4 x-x^{2}$ and $g(x)=3$.
(a) Find the coordinates of A and B, the points of intersection of f and g.
(b) Calculate the area enclosed between the curve and the line.

$$
4 x-x^{2}=3
$$

$$
x^{2}-4 x+3=4
$$

$$
(x-1)(x-3)
$$

$$
x=1,3
$$

$$
\begin{aligned}
& \int_{1}^{3} f(x)-g(x) d x \\
& 2 x^{2}-\frac{x^{3}}{3}-3+\left.\right|_{1} ^{3} \\
& (18-9-9)-\left(2-\frac{1}{3}-3\right)=\frac{4}{3}
\end{aligned}
$$

2. Let $f(x)=x^{2}$ and $g(x)=2 x^{2}-25$.
(a) Find the coordinates of P and Q, the points of intersection of f and g.
(b) Calculate the area enclosed between the curves.

$$
\begin{gathered}
2 x^{2}-25=x^{2} \\
x^{2}-25=0 \\
(x+5)(x-5)=0
\end{gathered}
$$

$$
\begin{aligned}
& \int_{-5}^{5} x^{2}-\left(2 x^{2}-25\right) d x \\
& \int_{-5}^{5}-x^{2}+25 d x
\end{aligned}
$$

$$
\begin{gathered}
-\frac{x^{3}}{3}+\left.25 x\right|_{-5} ^{5}=\left(-\frac{125}{3}+125\right)-\left(\frac{125}{3}-125\right) \\
=\frac{500}{3}
\end{gathered}
$$

3. Let $f(x)=7 x-2 x^{2}$ and $g(x)=3 x$.
(a) Find the coordinates of A and B, the points of intersection of f and g.
(b) Calculate the area enclosed between the curve and the line.

$$
\begin{aligned}
& \int_{0}^{2} 7 x-2 x^{2}-3 x d x \\
& \int_{0}^{2} 4 x-2 x^{2} d x \\
& 2 x^{2}-\left.\frac{2 x^{3}}{3}\right|_{0} ^{2}
\end{aligned}
$$

$$
\begin{aligned}
7 x-2 x^{2} & =3 x \\
2 x^{2}-4 x & =0 \\
2 x(x-2) & =0
\end{aligned}
$$

$$
8-\frac{16}{3}=\frac{8}{3}
$$

St. Francis High School
4. Let $f(x)=2 x^{2}-6$ and $g(x)=10-2 x^{2}$.
(a) Find the coordinates of K and L, the points of intersection of f and g.
(b) Calculate the area enclosed between the curves.

$$
\begin{aligned}
& \begin{array}{l}
2 x^{2}-6=10-2 x^{2} \\
4 x^{2}-16=0 \\
(2 x-4)(2 x+4)=0
\end{array} \\
& \int_{-2}^{2}\left(10-2 x^{2}\right)-\left(2 x^{2}-6\right) d x \\
& \left.\int_{-2}^{2} 16-4 x^{2} d x=16 x-\left.\frac{4 x^{3}}{3}\right|_{-2} ^{2}=32-\frac{32}{3}\right)-\left(-32+\frac{22}{3}\right)=64-\frac{64}{3}=\frac{128}{3}
\end{aligned}
$$

5. Let $f(x)=x^{3}+x^{2}$ and $g(x)=2 x^{2}+2 x$.
(a) Find the coordinates of A and B, the points of intersection of f and g in the first quadrant.
(b) Calculate the area enclosed between the curves in the first quadrant.

$$
\begin{aligned}
& \int_{0}^{2}\left(2 x^{2}+2 x\right)-\left(x^{3}+x^{2}\right) d x \\
& \int_{0}^{2}-x^{3}+x^{2}+2 x d x \\
& \frac{-x^{4}}{4}+\frac{x^{3}}{3}+\left.x^{2}\right|_{0} ^{2}=\left(-\frac{16}{4}+\frac{8}{3}+4\right)-0=\frac{8}{3}
\end{aligned}
$$

6. Let $f(x)=x(x-3)(x+3)$ and $g(x)=7 x$.
(a) Find the coordinates of A, B, and C, the points of intersection of f and g.
(b) Calculate the area enclosed between the curve and the line.

$$
\begin{aligned}
& x(x-3)(x+3)=7 \not x \\
& \text { so }(0,0) \text { is a solution } \\
& x^{2}-9=7 \\
& x^{2}-16=0 \\
& (x+4)(x-4)=0
\end{aligned}
$$

$$
\begin{aligned}
A & =\int_{-4}^{0} f(x)-g(x) d x+\int_{0}^{4} g(x)-f(x) d x \\
& =\int_{-4}^{0}\left(x^{3}-9 x\right)-7 x d x+\int_{0}^{4} 7 x-\left(x^{3}-9 x\right) d x \\
& =\int_{-4}^{0} x^{3}-16 x d x+\int_{0}^{4} 16 x-x^{3} d x
\end{aligned}
$$

$$
\text { By syuntry }=2\left[8 x^{2}-\frac{x^{4}}{4}\right]_{0}^{4}=2[128-64]=128
$$

7. Let $f(x)=x^{2}-4 x+8$ and $g(x)=8+4 x-x^{2}$.
(a) Find the coordinates of A and B, the points of intersection of f and g.
(b) Calculate the area enclosed between the curves.

8. Let $f(x)=x^{3}-1$ and $g(x)=x^{2}-1$.
(a) Calculate the area enclosed between the curves and the lines $x=-1$ and $x=1$.

$$
\begin{aligned}
& \int_{-1}^{1}\left(x^{2}-1\right)-\left(x^{3}-1\right) d x \\
& \int_{-1}^{1} x^{2}-x^{3} d x=\frac{x^{3}}{3}-\left.\frac{x^{4}}{4}\right|_{-1} ^{1} \\
&=\left(\frac{1}{3}-\frac{1}{4}\right)-\left(-\frac{1}{3}-\frac{1}{4}\right)=\frac{2}{3}+0=\frac{2}{3}
\end{aligned}
$$

9. Let $f(x)=x^{3}-x^{2}-7 x+5$ and $g(x)=2 x-4$.
(a) Find the coordinates of A, B, and C, the points of intersection of f and g.
46.3
(b) Calculate the area enclosed between the curves.

$\int_{-3}^{1} x^{3}-x^{2}-9 x+9 d x+\int_{1}^{3}-x^{3}+x^{2}+9 x-9 x d x$
$\frac{x^{4}}{4}-\frac{x^{3}}{3}-\frac{9}{2} x^{2}+\left.9 x\right|_{-3} ^{1}+\left(\frac{-x^{4}}{4}+\frac{x^{3}}{3}+\frac{9}{2} x^{2}-\left.9 x\right|_{1} ^{3}\right)$

$$
\begin{gathered}
\left(\frac{1}{4}-\frac{1}{3}-\frac{9}{2}+9\right)-\left(\frac{3^{4}}{4}+\frac{3^{3}}{3}-\frac{81}{2}-27\right)+\left(-\frac{34}{4}+\frac{3^{3}}{3}+\frac{81}{2}-27\right)-\left(-\frac{1}{4}+\frac{7}{13}+\frac{9}{2} \cdot 9\right) \\
\left(\frac{53}{12}\right)-\left(\frac{-153}{4}\right)+\left(\frac{9}{4}\right)-\left(\frac{-53}{12}\right) \\
\frac{128}{3}+\frac{20}{3}=\frac{148}{3}
\end{gathered}
$$

10. Let $f(x)=x(x+3), g(x)=\frac{4}{x^{2}}$ and $h(x)=x-\frac{x^{2}}{4}$.
(a) Find the coordinates of A, B, C, and D, the points of intersection of f, g and h in the first quadrant.
(b) Calculate the area enclosed between the curves.

11. Let R be the region in the first quadrant enclosed by the graphs of $f(x)=8 x^{3}$ and $g(x)=\sin (\pi x)$ Find the area of R

$$
\begin{array}{r}
\int_{0}^{1 / 2} \sin \pi x-8 x^{3} d x \\
-\frac{1}{\pi} \cos \pi x-\left.2 x^{4}\right|_{0} ^{1 / 2} \\
\left.\left(0-\frac{1}{8}+\frac{1}{\pi}\right)^{4}\right)-\left(\frac{-1}{\pi}\right)^{2}
\end{array}
$$

0.1933698862
12. Find the area of the region bounded by $y=\sqrt{x}$ and $y=\frac{x}{2}$

13. Let $f(x)=e^{2 x-x^{2}}$. Let region R be the area bounded by f and above the horizontal line $y=2$, and let S be region bounded by the graph of f and between the horizontal lines $y=1$ and $y=2$ Find the area of R and S.

$$
\begin{gathered}
R=\int_{A}^{B=1.553942975} f(x)-2 d x=0.5141427856 \\
S=\int_{0}^{0=2} f(x)-1 d x-R \\
S=2.060156939-R \\
S=1.546014153
\end{gathered}
$$

14. Let R be the region in the first quadrant under the graph of $y=\frac{1}{\sqrt{x}}$ for $4 \leq x \leq 9$.
(a) Find the area of R

$$
\begin{aligned}
\int_{4}^{9} x^{-1 / 2} d x & =\left.2 x^{1 / 2}\right|_{4} ^{9} \\
& =2(3-2)
\end{aligned}
$$

(b) If the line $x=k$ divided the region R into two regions of equal area, what it the value of k ?

$$
\begin{aligned}
& \int_{4}^{k} x^{-1 / 2} d x=\left.2 x^{1 / 2}\right|_{4} ^{k} \\
& 2 \sqrt{k}-4=1 \quad\left(\text { half }_{2}{ }^{\circ}\right) \\
& \sqrt{k}=\frac{5}{2} \\
& k=\frac{25}{4}
\end{aligned}
$$

15. Let R be the region enclosed by the graph of $y=\sqrt{x-1}$, the vertical line $x=10$ and the x-axis. (a) Find the area of R

$$
\begin{aligned}
\int_{1}^{10}(x-1)^{1 / 2} d x & =\left.\frac{2}{3}(x-1)^{3 / 2}\right|_{1} ^{10} \\
& =\frac{2}{2}\left(9^{3 / 2}-0\right)=2 \cdot \frac{3^{3}}{3^{1}}=18
\end{aligned}
$$

(b) Find the volume of the solid generated when R is revolved about the horizontal line $y=3$.

$$
\begin{aligned}
& \text { (c) Find the volume of the solid generated when } R \text { is revolved about the vertical line } x=10 \text {. } \\
& \text { - } \\
& \left.\right|_{-y=\sqrt{x-1}} ^{y} \quad R(y)=10-\left(y^{2}+1\right)=9-y^{2} \\
& \begin{array}{c}
R(y)=10-\left(y^{2}+1\right)=9- \\
R^{2}=81-18 y^{2}+y^{4}
\end{array} \\
& Y=\pi \int_{0}^{3}[R(y)]^{2} d y=407.1504079 \\
& V=\pi \int_{0}^{3} 81-18 y^{2}+y^{4} d y=\pi\left[81 y-6 y^{3}+y^{5}\right]_{0}^{3}=\frac{648}{5} \pi
\end{aligned}
$$

16. (No Calc) Let R be the region bounded by the x-axis, the graph of $y=\sqrt{x}$ and the vertical line $x=4$
(a) Find the area of R.

$$
\begin{aligned}
\int_{0}^{4} \sqrt{x} d x & =\left.\frac{2}{3} x^{3 / 2}\right|_{0} ^{4} \\
& =\frac{2}{3}\left[4^{3 / 2}-0\right]=\frac{2}{3} 2^{3}=\frac{16}{3}
\end{aligned}
$$

(b) Find the value of h such that the vertical line $x=h$ divided the region R into two regions of equal area.

$$
\begin{gathered}
\int_{0}^{h} \sqrt{x} d x=\left.\frac{2}{3} x^{3 / 2}\right|_{0} ^{h}=\frac{2}{3}\left[h^{3 / 2}-0\right] \\
\frac{2 h^{3 / 2}}{3}=\frac{8}{3} \quad\left(\frac{1}{2} \text { of } \frac{16}{3}\right) \\
h^{3 / 2}=4 / 43 \\
h=4^{2 / 3} \text { or } \sqrt[3]{16}
\end{gathered}
$$

(d) The vertical line $x=k$ divides the region R into two regions such that when these two regions are revolved about the x-axis, they generated solids with equal volumes. Find the value k.

$$
\begin{aligned}
& \pi \int_{0}^{\text {they generated solids with equal volumes. Find the value } k .} k \\
&(\sqrt{x})^{2} d x=\left.\frac{\pi}{2} x^{2}\right|_{0} ^{k} \\
& \frac{\pi}{2} k^{2}=4 \pi \\
& k^{2}=4 \cdot 2 \\
& k=\sqrt{8} \text { or } 2 \sqrt{2}
\end{aligned}
$$

Page 9 of 10

February 2022
17. Let the region S be the shaded region in the first quadrant bounded above by the horizontal line $y=3$, below by the graph of $y=3 \sin x$, and on the left by the vertical line $x=\frac{\pi}{4}$.
(a) What is the volume of the solid generated if S is revolved about the horizontal line $y=3$?

$$
\begin{aligned}
& R(x)=3-3 \sin x \\
& \pi \int_{\frac{\pi}{4}}^{\pi / 2}[R(x)]^{2} d x=0.3925518808
\end{aligned}
$$

(b) What is the volume of the solid generated if S is revolved about the horizontal line $y=5$?

outer

$$
\begin{aligned}
& R(x)=5-3 \sin x \quad \text { inner } r(x)=5-3=2 \\
& \pi \int_{\pi / 4}^{\pi / 2}[R(x)]^{2}-[r(x)]^{2} d x=8.278869656
\end{aligned}
$$

(c) What is the volume of the solid generated if S is revolved about the vertical line $x=\frac{\pi}{4}$?

$$
\begin{aligned}
& \text { If } y=3 \sin x, \text { then } x=\arcsin \left(\frac{y}{3}\right) \\
& R(y)=\arcsin \left(\frac{y}{3}\right)-\frac{\pi}{4} \\
& \left(\frac{\pi}{4}, 3\right)\left(\frac{\pi}{2} 3\right) \quad \pi \int_{\sqrt{2}}^{3}(R(y))^{2} d y=0.292769773 \\
& \left(\frac{\pi}{4}, 3 \sin \frac{\pi}{4}\right) \quad\left(3 \sin \frac{\pi}{4}=\frac{3 \sqrt{2}}{2}=\frac{3}{\sqrt{2}} \approx 2.121320314\right) \\
& 0
\end{aligned}
$$

(d) What is the volume of the solid generated if S is revolved about the y-axis?

$$
\begin{aligned}
& \text { outer } R(y)=\arcsin \left(\frac{y}{3}\right) \\
& \text { inner } r(y)=\frac{\pi}{4} \\
& \pi \int_{\frac{3}{\sqrt{2}}}^{3}[R(y)]^{2}-[r(y)]^{2} d y=1.451827223
\end{aligned}
$$

so $x=y^{2} \quad$ so $x=y^{1 / 3}$
February 2022
18. The base of a solid is bounded by $y=\sqrt{x}$ and $y=x^{3}$. Find the volume of the solid with each of the following cross sections:
(a) Semi-circles perpendicular to the y-axis.

$$
A=\frac{\pi}{2}\left(\frac{d}{2}\right)^{2}=\frac{\pi}{8} d^{2}
$$

$$
\begin{aligned}
& d=y^{1 / 3}-y^{2} \quad \text { (Right is largorthem left) } \\
& V=\frac{\pi}{8} \int_{0}^{1}\left(y^{1 / 3}-y^{2}\right)^{2} d y=\frac{\pi}{8} \int_{0}^{1} y^{2 / 3}-2 y^{7 / 3}+y^{4} d y \\
& V=\left.\frac{\pi}{8}\left(\frac{3}{5} y^{5 / 3}-\frac{6}{10} y^{10 / 3}+\frac{y^{5}}{5}\right)\right|_{0} ^{1}=\frac{\pi}{8}\left(\frac{3}{5}-\frac{6}{10}+\frac{1}{5}\right) \\
& \\
& =\frac{\pi}{40}
\end{aligned}
$$

(b) Rectangles perpendicular the the x-axis whose height is $\frac{1}{3}$ their base.

$$
\begin{aligned}
\int_{0}^{1} \frac{b^{2}}{3} d x=\frac{1}{3} \int_{0}^{1}\left(\sqrt{x}-x^{3}\right)^{2} d x & =\frac{1}{3} \int_{0}^{1} x-2 x^{7 / 2}+x^{6} d x \\
& =\left.\frac{1}{3}\left(\frac{x^{2}}{2}-\frac{4}{9} x^{9 / 2}+\frac{x^{7}}{7}\right)\right|_{0} ^{1} \\
& =\frac{1}{3}\left(\frac{25}{126}\right)=\frac{25}{378} \quad(\approx .0661)
\end{aligned}
$$

(c) Isosceles Right triangle perpendicular to the x-axis with a leg in the base.

19. Let $f(x)=2 x^{2}-6 x+4$ and $g(x)=4 \cos \left(\frac{\pi x}{4}\right)$. Let R be the region bounded by the graphs of f and g. The region R is the base of a solid. For this solid, each cross section perpendicular to the x-axis is a square. What is the volume of this solid.

$$
V=\int_{0}^{2}[g(x)-f(x)]^{2} d x
$$

$$
\begin{array}{ll}
A=s^{2} & 0 \\
A=(g(x)-f(x))^{2} & =8.503140149
\end{array}
$$

