Review Assignment Chapter 3

1) Find c such that the mean value theorem applies to the function f and write the equation of the tangents line to the curve at x = c. $f(x) = x^3$, [0,1]

2). Find absolute extrema for the function $f(x) = x^3 - 3x + 2$ on the interval $\begin{bmatrix} -3,2 \end{bmatrix}$ and justify.

3). Find f ' and f '', draw sign lines and answer the following questions about the function $f(x) = x^3 - 3x + 2$.

CP's

f increasing/decreasing justification

Rel Extrema justification (1st der test) justification (2nd der test)

f is CU/CD justification

P of I justification

End behavior $\lim_{x \to \pm \infty} f(x)$

4) Given the function g and it's 1^{st} and 2^{nd} derivatives

a) graph the function finding zeros, undefined and signs and end behavior of g.

$$g(x) = \frac{x}{x^2 + 1}$$

b) improve on the graph using g ' to find coordinates of relative extrema and inc/dec. (mark slopes of zero with a horizontal bar -)

$$g'(x) = \frac{1-x^2}{(x^2+1)^2}$$

c) improve more on the graph using g " to find coordinates of P of I on g and CU/CD (mark P of I's with a slanted bar /)

$$g''(x) = \frac{2x(x^2 - 3)}{(x^2 + 1)^3}$$

6) A rectangle is bound by the x and y axis and the graph $y = \frac{6-x}{2}$ (see figure). What length and width should the rectangle have so that it's area is a maximum?

