Calc AB Quiz Prep

5. (6 points) 2 ways to justify Local/Relative Min-Stuff to Know Cold for Calculus AB imum of f(x): 1. (3 points) L'Hopital's Rule: If $\lim_{x \to a} \frac{f(x)}{a(x)} =$ _____ OR _____ (a) If ______ from _____ then $\lim_{x \to a} \frac{f(x)}{q(x)} =$ to OR (b) If $f'(x) = \frac{dy}{dx} = _$ AND $f''(x) = \frac{d^2y}{dx^2} _ 0$ 2. (6 points) Particle Motion Position = x(t)Velocity = _____ 6. (6 points) 2 ways to justify Local/Relative Max-Speed = _____ imum of f(x): Acceleration =(a) If ______ from _____ Displacement from a to b =_____ to _____ OR (b) $f'(x) = \frac{dy}{dx} = _$ AND $f''(x) = \frac{d^2y}{dx^2} _ 0$ Total Distance Traveled from a to b =_____ Speed is decreasing when _____ and ________ signs. 7. (5 points) Points of Inflection of f(x): 3. (5 points) $_$ = 0 OR $_$ does not exist If (a) $\sin(\frac{2\pi}{3}) =$ AND (b) $\cos\left(\frac{2\pi}{3}\right) =$ _____ changes _____ OR if (c) $\arcsin\left(\frac{1}{2}\right) =$ f' changes from _____ to ____ (d) $\cos(\pi) =$ or to (e) $\tan\left(\frac{3\pi}{4}\right) =$ 8. (2 points) Extreme Value Theorem: If f(x) is 4. (5 points) Justifying Absolute Extrema on [a, b], then there exists a(n)(a) Critical Points of $f(x) = _ OR$ maximum and minimum on that interval. (b) Absolute/Global Max or Min: 9. (3 points) Intermediate Value Theorem: If f(x)Test is _____ on [a, b], and k is between (c) Must include all and only the values of the $_$ and $_$, then there exists a c, _____ points and the _____ points a < c < b, where _____.

Name:

St. Francis High School

AP Calculus AB

10. (5 points)

11. (5 points)

(a) $\int \cos x \, dx =$

(b) $\int \sec^2 x \, dx =$

(d) $\int \frac{1}{1+x^2} dx =$

(c) $\int \frac{1}{x} dx =$

(a)
$$\frac{d}{dx} (x^n) =$$

(b) $\frac{d}{dx} (\ln x) =$
(c) $\frac{d}{dx} (e^x) =$
(d) $\frac{d}{dx} (\sec x) =$
(e) If *a* is a constant, $\frac{d}{dx} (a^x) =$

14. Area between f(x) and g(x) from x = a to x = b:

- 15. Volume of revolution of y = f(x) around y = 0from x = a to x = b:
- 16. Volume of revolution of x = g(y) around x = 0from y = c to y = d:

17. Volume of a solid whose cross sectional area is A(x) from x = a to x = b:

12. (2 points)

$$= \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$$
$$= \lim_{x \to c} \frac{f(x) - f(c)}{x - c}$$

(e) If a is a constant, $\int a^x dx =$

- 18. for any constant a, $\frac{d}{dx} \int_{a}^{f(x)} g(t) dt =$
- 19. If f(x) is continuous on [a, b] and differentiable on (a, b), then the average value f(c) =

- 13. (3 points) $\frac{d}{dx} (f(x)g(x)) =$ $\frac{d}{dx} \left(\frac{f(x)}{g(x)} \right) =$ $\frac{d}{dx} (f(g(x))) =$
- St. Francis High School

 $20. \lim_{x \to 0} \frac{\sin x}{x} =$