Stuff to Know Cold for Calculus AB

1. (3 points) L'Hop̂ital's Rule:

If $\lim _{x \rightarrow a} \frac{f(x)}{g(x)}=$ \qquad $O R$ \qquad
then $\lim _{x \rightarrow a} \frac{f(x)}{g(x)}=$
2. (6 points) Particle Motion Position $=x(t)$

Velocity $=$ \qquad

Speed $=$ \qquad

Acceleration $=$ \qquad

Displacement from a to $b=$ \qquad
Total Distance Traveled from a to $b=$ \qquad

Speed is decreasing when \qquad
and \qquad have \qquad signs.
7. (5 points) Points of Inflection of $f(x)$:
3. (5 points)
(a) $\sin \left(\frac{2 \pi}{3}\right)=$
(b) $\cos \left(\frac{2 \pi}{3}\right)=$
(c) $\arcsin \left(\frac{1}{2}\right)=$
(d) $\cos (\pi)=$
(e) $\tan \left(\frac{3 \pi}{4}\right)=$
4. (5 points) Justifying Absolute Extrema
(a) Critical Points of $f(x)=$ \qquad $O R$ \qquad
(b) Absolute/Global Max or Min:
\qquad Test
(c) Must include all and only the values of the
\qquad points and the
\qquad points
5. (6 points) 2 ways to justify Local/Relative Minimum of $f(x)$:
(a) If \qquad from \qquad
to \qquad OR
(b) If $f^{\prime}(x)=\frac{d y}{d x}=$ \qquad $\operatorname{AND} f^{\prime \prime}(x)=\frac{d^{2} y}{d x^{2}}$ 0
6. (6 points) 2 ways to justify Local/Relative Maximum of $f(x)$:
(a) If \qquad from
to \qquad OR
(b) $f^{\prime}(x)=\frac{d y}{d x}=$ \qquad

If \qquad $=0 \mathrm{OR}$ \qquad AND
\qquad changes \qquad
f^{\prime} changes from \qquad to
or \qquad to \qquad
8. (2 points) Extreme Value Theorem: If $f(x)$ is \ldots on $[a, b]$, then there exists a(n) maximum and minimum on that interval.
9. (3 points) Intermediate Value Theorem: If $f(x)$
is \qquad on $[a, b]$, and k is between
\qquad and \qquad , then there exists a c,
$a<c<b$, where \qquad .
\qquad $\operatorname{AND} f^{\prime \prime}(x)=\frac{d^{2} y}{d x^{2}} \quad 0$
\qquad 0 does not exist OR if
\qquad
\qquad
10. (5 points)
(a) $\frac{d}{d x}\left(x^{n}\right)=$
(b) $\frac{d}{d x}(\ln x)=$
(c) $\frac{d}{d x}\left(e^{x}\right)=$
(d) $\frac{d}{d x}(\sec x)=$
(e) If a is a constant, $\frac{d}{d x}\left(a^{x}\right)=$
14. Area between $f(x)$ and $g(x)$ from $x=a$ to $x=b$:
15. Volume of revolution of $y=f(x)$ around $y=0$ from $x=a$ to $x=b$:
11. (5 points)
(a) $\int \cos x d x=$
(b) $\int \sec ^{2} x d x=$
(c) $\int \frac{1}{x} d x=$
(d) $\int \frac{1}{1+x^{2}} d x=$
(e) If a is a constant, $\int a^{x} d x=$
16. Volume of revolution of $x=g(y)$ around $x=0$ from $y=c$ to $y=d$:
17. Volume of a solid whose cross sectional area is $A(x)$ from $x=a$ to $x=b$:
12. (2 points)

$$
\begin{aligned}
& =\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h} \\
& =\lim _{x \rightarrow c} \frac{f(x)-f(c)}{x-c}
\end{aligned}
$$

18. for any constant $a, \frac{d}{d x} \int_{a}^{f(x)} g(t) d t=$
19. If $f(x)$ is continuous on $[a, b]$ and differentiable on (a, b), then the average value $f(c)=$
20. (3 points)
$\frac{d}{d x}(f(x) g(x))=$
$\frac{d}{d x}\left(\frac{f(x)}{g(x)}\right)=$
$\frac{d}{d x}(f(g(x)))=$
21. $\lim _{x \rightarrow 0} \frac{\sin x}{x}=$
