CALCULUS BC

9.3 - Parametric Equations and Calculus

If a smooth curve C is given by the equations $x=f(t)$ and $y=g(t)$,
then the slope of C at the point (x, y) is given by $\frac{d y}{d x}=\frac{\frac{d y}{d t}}{\frac{d x}{d t}}$ where $\frac{d x}{d t} \neq 0$,
and the second derivative is given by $\frac{d^{2} y}{d x^{2}}=\frac{d}{d x}\left[\frac{d y}{d x}\right]=\frac{\frac{d}{d t}\left[\frac{d y}{d x}\right]}{\frac{d x}{d t}}$.
Ex. 1 (Noncalculator)
Given the parametric equations $x=t^{2}+9$ and $y=4 t^{5}-6 t^{3}+3$, find $\frac{d y}{d x}$ and $\frac{d^{2} y}{d x^{2}}$ in terms of t.

Ex. 2 (Noncalculator)

Given the parametric equations $x=5 \sin t$ and $y=3 \cos t$, write an equation of the tangent line to the curve at the point where $t=\frac{2 \pi}{3}$.

Ex 3 (Noncalculator)
Find all points of horizontal and vertical tangency given the parametric equations

$$
x=3 t^{2}-6 t, \quad y=t^{2}-8 t+9 .
$$

Earlier in the year we learned to find the arc length of a curve C given by $y=h(x)$ over the interval $x_{1} \leq x \leq x_{2}$ by using the formula $s=\int_{x_{1}}^{x_{2}} \sqrt{1+\left(h^{\prime}(x)\right)^{2}} d x=\int_{x_{1}}^{x_{2}} \sqrt{1+\left(\frac{d y}{d x}\right)^{2}} d x$.
If C is represented by the parametric equations $x=f(t)$ and $y=g(t)$ over the interval $a \leq t \leq b$, then

Length of arc for parametric graphs is $s=\int_{a}^{b} \sqrt{\left(\frac{d x}{d t}\right)^{2}+\left(\frac{d y}{d t}\right)^{2}} d t$.
Note that the formula works when the curve does not intersect itself on the interval $a \leq t \leq b$, and the curve must be smooth.

Ex. 4 (Noncalculator)

Set up an integral expression for the arc length of the curve given by the parametric
equations $x=e^{5 t+2}, y=3 \sin \left(t^{2}\right), 0 \leq t \leq 4$. Do not evaluate.

Ex. Which of the following gives the length of the path described by the parametric equations
$x=\sin \left(t^{3}\right)$ and $y=e^{5 t}$ from $t=0$ to $t=\pi$?
(A) $\int_{0}^{\pi} \sqrt{\sin ^{2}\left(t^{3}\right)+e^{10 t}} d t$
(B) $\int_{0}^{\pi} \sqrt{\cos ^{2}\left(t^{3}\right)+e^{10 t}} d t$
(C) $\int_{0}^{\pi} \sqrt{9 t^{4} \cos ^{2}\left(t^{3}\right)+25 e^{10 t}} d t$
(D) $\int_{0}^{\pi} \sqrt{3 t^{2} \cos \left(t^{3}\right)+5 e^{5 t}} d t$
(E) $\int_{0}^{\pi} \sqrt{\cos ^{2}\left(t^{3}\right)+e^{10 t}} d t$

Ex. A curve C is defined by the parametric equations $x=t^{2}-4 t+1$ and $y=t^{3}$. Which of the following is an equation of the line tangent to the graph of C at the point $(-3,8)$?
(A) $x=-3$
(B) $x=2$
(C) $y=8$
(D) $y=-\frac{27}{10}(x+3)+8$
(E) $y=12(x+3)+8$

Ex. The length of the path described by the parametric equations $x=\frac{1}{3} t^{3}$ and $y=\frac{1}{2} t^{2}$, where $0 \leq t \leq 1$, is given by
(A) $\int_{0}^{1} \sqrt{t^{2}+1} d t$
(B) $\int_{0}^{1} \sqrt{t^{2}+t} d t$
(C) $\int_{0}^{1} \sqrt{t^{4}+t^{2}} d t$
(D) $\frac{1}{2} \int_{0}^{1} \sqrt{4+t^{4}} d t$
(E) $\frac{1}{6} \int_{0}^{1} t^{2} \sqrt{4 t^{2}+9} d t$

Ex. A particle moves in the $x y$-plane so that its position for $t \geq 0$ is given by the parametric equations $x=\ln (t+1)$ and $y=k t^{2}$, where k is a positive constant. The line tangent to the particle's path at the point where $t=3$ has slope 8 . What is the value of k ?

Ex. A curve is defined by the parametric equations $x(t)=3 e^{2 t}$ and $y(t)=e^{3 t}-1$. What is $\frac{d^{2} y}{d x^{2}}$ in terms of t ?

