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n Write the terms of a sequence.

n Determine whether a sequence converges or 
diverges.

n Write a formula for the nth term of a sequence.

n Use properties of monotonic sequences and 
bounded sequences.

Objectives
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Sequences
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Sequences
A sequence is defined as a function whose domain is the 
set of positive integers. Although a sequence is a function, 
it is common to represent sequences by subscript notation 
rather than by the standard function notation. 

For instance, in the sequence

1 is mapped onto a1, 2 is mapped onto a2, and so on. The 
numbers a1, a2, a3, . . ., an, . . . are the terms of the 
sequence. The number an is the nth term of the sequence, 
and the entire sequence is denoted by {an}.
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Example 1 – Writing the Terms of a Sequence

a. The terms of the sequence {an} = {3 + (–1)n} are
3 + (–1)1, 3 + (–1)2, 3 + (–1)3, 3 + (–1)4, . . .

2,             4,            2,            4,   . . . .

b. The terms of the sequence {bn}                    are
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c. The terms of the sequence {cn}                  are

d. The terms of the recursively defined sequence {dn}, 
where d1 = 25 and dn + 1 = dn – 5, are

25, 25 – 5 = 20, 20 – 5 = 15, 15 – 5 = 10,. . . . .

Example 1 – Writing the Terms of a Sequence
cont'd
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Limit of a Sequence
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Limit of a Sequence
The primary focus of this chapter concerns sequences 
whose terms approach limiting values. Such sequences are 
said to converge. For instance, the sequence {1/2n}

converges to 0, as indicated in the following definition.



10

Graphically, this definition says that eventually (for n > M 
and ε > 0), the terms of a sequence that converges to L will
lie within the band between the lines y = L + ε and y = L – ε,
as shown in Figure 9.1.

If a sequence {an} agrees with a
function f at every positive integer,
and if f(x) approaches a limit L
as then the sequence
must converge to the same limit L.

Figure 9.1

Limit of a Sequence
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Limit of a Sequence
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Example 2 – Finding the Limit of a Sequence

Find the limit of the sequence whose nth term is

Solution:
You learned that

So, you can apply Theorem 9.1 to conclude that
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There are different ways in which a sequence can fail to 
have a limit. 

One way is that the terms of the sequence increase without 
bound or decrease without bound.

These cases are written symbolically, as shown below.

Limit of a Sequence
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Limit of a Sequence
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The symbol n! (read “n factorial”) is used to simplify some 
of these formulas. Let n be a positive integer; then 
n factorial is defined as

n! = 1 • 2 • 3 • 4 . . . (n – 1) • n.

As a special case, zero factorial is defined as 0! = 1.        

From this definition, you can see that 1! = 1, 2! = 1 • 2 = 2, 
3! = 1 • 2 • 3 = 6, and so on.

Limit of a Sequence
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Factorials follow the same conventions for order of 
operations as exponents. That is, just as 2x3 and (2x)3

imply different order of operations, 2n! and (2n)! imply the 
orders

2n! = 2(n!) = 2(1 • 2 • 3 • 4 • • • n)

and

(2n)! = 1 • 2 • 3 • 4 • • • n • (n + 1) • • • 2n

respectively.

Limit of a Sequence
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Another useful limit theorem that can be rewritten for 
sequences is the Squeeze Theorem.

Limit of a Sequence
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Example 5 – Using the Squeeze Theorem

Show that the sequence                           converges, and 
find its limit.

Solution:
To apply the Squeeze Theorem, you must find two 
convergent sequences that can be related to {cn}.
Two possibilities are an = –1/2n and bn = 1/2n, both of which 
converge to 0.
By comparing the term n! with 2n, you can see that

n! = 1 • 2 • 3 • 4 • 5 • 6 . . . n = 
and

2n = 2 • 2 • 2 • 2 • 2 • 2 . . . 2 =
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Example 5 – Solution
This implies that for n ≥ 4, 2n < n!, and you have

as shown in Figure 9.2.

So, by the Squeeze Theorem,
it follows that

Figure 9.2

cont'd
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Limit of a Sequence
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Pattern Recognition for Sequences



22

Pattern Recognition for Sequences
Sometimes the terms of a sequence are generated by 
some rule that does not explicitly identify the nth term of the 
sequence.

In such cases, you may be required to discover a pattern in 
the sequence and to describe the nth term.

Once the nth term has been specified, you can investigate 
the convergence or divergence of the sequence.
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Example 6 – Finding the nth Term of a Sequence

Find a sequence {an} whose first five terms are

and then determine whether the sequence you have 
chosen converges or diverges.

Solution:
First, note that the numerators are successive powers of 2, 
and the denominators form the sequence of positive odd 
integers. 
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Example 6 – Solution
By comparing an with n, you have the following pattern.

Consider the function of a real variable f(x) = 2x/(2x – 1). 
Applying L'Hôpital's Rule produces

Next, apply Theorem 9.1 to conclude that 

So, the sequence diverges.

cont'd
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Monotonic Sequences and 
Bounded Sequences
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Monotonic Sequences and Bounded Sequences
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Example 8 – Determining Whether a Sequence Is Monotonic

Determine whether each sequence having the given nth 
term is monotonic.

Solution:
a. This sequence alternates between

2 and 4. 

So, it is not monotonic.

Figure 9.3
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Example 8 – Solution
b. This sequence is monotonic because each successive  

term is larger than its predecessor.

To see this, compare the terms
bn and bn + 1.

[Note that, because n is positive,
you can multiply each side of the
inequality by (1 + n) and (2 + n)
without reversing the
inequality sign.]

Figure 9.3

cont'd
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Example 8 – Solution

Starting with the final inequality, which is valid, you can 
reverse the steps to conclude that the original inequality is 
also valid.

cont'd
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Example 8 – Solution
c. This sequence is not monotonic, because the second

term is greater than both the first term and the third term.

(Note that if you drop the first term,
the remaining sequence c2, c3, c4, . . .
is monotonic.)

Figure 9.3

cont'd
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Monotonic Sequences and Bounded Sequences
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One important property of the real numbers is that they are 
complete. Informally this means that there are no holes or 
gaps on the real number line. (The set of rational numbers 
does not have the completeness property.)

The completeness axiom for real numbers can be used to 
conclude that if a sequence has an upper bound, then it 
must have a least upper bound (an upper bound that is 
less than all other upper bounds for the sequence). 

Monotonic Sequences and Bounded Sequences
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For example, the least upper bound of the sequence 
{an} = {n/(n + 1)},

is 1. 

Monotonic Sequences and Bounded Sequences
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Example 9 – Bounded and Monotonic Sequences

a. The sequence {an} = {1/n} is both bounded and
monotonic. So, by Theorem 9.5, it must converge.

b. The divergent sequence {bn} = {n2/(n + 1)} is monotonic 
but not bounded. (It is bounded below.)

c. The divergent sequence {cn} = {(–1)n} is bounded but   
not monotonic.


