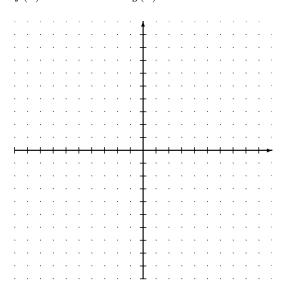
Calc AB: Indeterminate Forms and L'Hôpital

Name:

1. Sketch the graphs of $f(x) = x^2 - 2x$ and $g(x) = 4x - 2x^2$



(e) $\frac{0}{0}$ form: $\lim_{x\to 0} \frac{e^{2x}-1}{x}$

(f) $\frac{\infty}{\infty}$ form: $\lim_{x \to \infty} \frac{\ln x}{x}$

- (a) Sketch the two tangent lines when x=2
- (g) Done twice: $\lim_{x \to -\infty} \frac{x^2}{e^{-x}}$
- (b) Write the equations (in point slope form) of the two tangent lines when x=2
- (h) $0 \cdot \infty$ form: $\lim_{x \to \infty} e^{-x} \sqrt{x}$

(c) So what would be

$$\lim_{x \to 2} \frac{f(x)}{g(x)} \text{ and } \lim_{x \to 2} \frac{f'(x)}{g'(x)}?$$

(d) L'Hôpital's Rule states that if f(x) and g(x) are differentiable functions and f(a) = g(a) = 0, then

$$\lim_{x \to a} \frac{f(x)}{g(x)} = \lim_{x \to a} \frac{f'(x)}{g'(x)}$$

if the limit of the right exists. (Note this is the ratio of the derivatives, not the derivative of the quotient)

It also works for $f(a)=g(a)=\infty$ and when $x\to\infty$

(i) 1^{∞} form (take ln to both sides) : $\lim_{x \to \infty} \left(1 + \frac{1}{x}\right)^x$

(j) 0^0 form (take ln to both sides) : $\lim_{x\to 0^+} (\sin x)^x$

$$\lim_{x \to 0} \frac{\sqrt{1+x} - 1}{x}$$

5. Find

$$\lim_{x \to \infty} x \sin\left(\frac{1}{x}\right) = \lim_{x \to \infty} \frac{\sin\left(\frac{1}{x}\right)}{\frac{1}{x}}$$

(we can move x to the denominator as $\frac{1}{x}$ to get a ratio for L'Hôpital).

$$\lim_{x \to \frac{\pi}{2}} \frac{\sec x}{1 + \tan x}$$

6. Find

$$\lim_{x \to 1} \left(\frac{1}{\ln x} - \frac{1}{x - 1} \right)$$

4. Evaluate

$$\int_{1}^{\infty} (1-x)e^{-x}dx.$$

Page 3 of 3

7. Find

$$\lim_{x \to 0+} x^x = \lim_{x \to 0+} e^{\ln x^x} = \lim_{x \to 0+} e^{x \ln x} = e^{\lim_{x \to 0+} x \ln x}$$

or

Let
$$y = \lim_{x \to 0+} x^x$$

$$\ln y = \ln \left[\lim_{x \to 0+} x \ln x \right]$$

(next move x to the denominator as $\frac{1}{x}$ to get a ratio for L'Hôpital).

8. Find

$$\lim_{x\to 0} \left(1 + \frac{1}{x}\right)^x$$
 Let $y = \lim_{x\to 0} \left(1 + \frac{1}{x}\right)^x$

(take the ln of both sides and move x to the denominator as $\frac{1}{x}$ to get a ratio for L'Hôpital).

Answers

$$(1)-\frac{1}{2}~(2)\frac{1}{2}~(3)~1~(4)~-\frac{1}{e}~(5)~1\\ (6)\frac{1}{2}\text{-see p 366 ex 5 (7) 1 (8)}e\text{-see page 571 ex 5}$$