

l'Hôpital's Rule If $\frac{f(a)}{g(b)}=\frac{0}{0}$ or $=\frac{\infty}{\infty}$,	Slope of a Parametric equation Given a $x(t)$ and a $y(t)$ the slope is	Fun	$\begin{aligned} & \text { les of } \\ & \text { ns for } \end{aligned}$	$\begin{aligned} & \text { onom } \\ & \text { mmol } \end{aligned}$	$\begin{aligned} & \text { ic } \\ & \text { ngles } \end{aligned}$
		θ	$\sin \theta$	$\cos \theta$	$\tan \theta$
then $\lim _{x \rightarrow a} \frac{f(x)}{g(x)}=\lim _{x \rightarrow a} \frac{f(x)}{g^{\prime}(x)}$		0°	0	1	0
Euler's Method If given that $\frac{d y}{d x}$ and that the	Polar Curve For a polar curve $r(\theta)$, the AREA inside a "leaf" is	$\frac{\pi}{6}, 30^{\circ}$	$\frac{1}{2}$	$\frac{\sqrt{3}}{2}$	$\frac{\sqrt{3}}{3}$
solution passes through $\left(x_{o}, y_{o}\right)$,	$\int_{\theta_{1}}^{\theta_{2}} \frac{1}{2}[r(\theta)]^{2} d \theta$	$\frac{\pi}{4}, 45^{\circ}$	$\frac{\sqrt{2}}{2}$	$\frac{\sqrt{2}}{2}$	1
- Use a tangent line to build	that $r=0$.	53°	4/5	3/5	4/3
$y=y_{1}+\frac{d y}{d x}\left(x-x_{1}\right)$	The SLOPE of $r(\theta)$ at a given θ is $x=r \cos \theta \quad y=r \operatorname{sins} \theta$	$\frac{\pi}{3}, 60^{\circ}$	$\frac{\sqrt{3}}{2}$	$\frac{1}{2}$	$\sqrt{3}$
	$\frac{\mathrm{dy}}{\mathrm{dy}}=\frac{d y / d \theta}{d x /}$	$\frac{\pi}{2}, 90^{\circ}$	1	0	" ∞ "
	$\mathrm{dx} \quad d x / d \theta$	$\pi, 180^{\circ}$	0	-1	0
Tabular Integration - When one piece is not the derivative of the other $\int \ln x d x=$	Ratio Test The series $\sum_{k=0}^{\infty} a_{k}$ converges if	L'hopit a functi	$\begin{gathered} \hline \text { Rule: } \\ \text { is } \frac{0}{n} \end{gathered}$		mit of
			0	α	
1/x $\quad \mathbf{x}$	a_{k}	Take th	tiv	op	
$\begin{aligned} & \int \ln x d x=x \ln x-\int 1 d x \\ & \int \ln x d x=x \ln x-x+C \end{aligned}$	If the limit equal 1 , you know nothing. Interval of convergence (Test endpoints)	derivative re-evalua			
Taylor Series If the function f is "smooth" at $x=a$, then it can be approximated by the $n^{\text {th }}$ degree polynomial $\begin{aligned} f(x) \approx f(a) & +f^{\prime}(a)(x-a) \\ & +\frac{f^{\prime \prime}(a)}{2!}(x-a)^{2}+\ldots \\ & +\frac{f^{(n)}(a)}{n!}(x-a)^{n} . \end{aligned}$ Take derivatives, plug in your center and divide by your factorials.	Lagrange Error Bound If $P_{n}(x)$ is the $n^{\text {th }}$ degree Taylor polynomial of $f(x)$ about c and $\left\|f^{(n+1)}(t)\right\| \leq M$ for all t between x and c, then $\left\|f(x)-P_{n}(x)\right\| \leq \frac{M}{(n+1)!}\|x-c\|^{n+1}$ $\mathrm{M}=$ Maximum of the next derivative ($\mathrm{x}-\mathrm{c}$) is the distance from center $(\mathrm{n}+1)$! Is the next derivative $\left\|f(x)-P_{n}(x)\right\|$ is the actual error	Sum of $S=\frac{1^{s t} t}{1}$ where r	finite he con	metric ratio	
Maclaurin Series A Taylor Series about $x=0$ is called Maclaurin. $\begin{aligned} e^{x} & =1+x+\frac{x^{2}}{2!}+\frac{x^{3}}{3!}+\ldots \\ \cos x & =1-\frac{x^{2}}{2!}+\frac{x^{4}}{4!}-\ldots \\ \sin x & =x-\frac{x^{3}}{3!}+\frac{x^{5}}{5!}-\ldots \\ \frac{1}{1-x} & =1+x+x^{2}+x^{3}+\ldots \\ \ln (x+1) & =x-\frac{x^{2}}{2}+\frac{x^{3}}{3}-\frac{x^{4}}{4}+\ldots \end{aligned}$	Alternating Series Error Bound If $S_{N}=\sum_{k=1}^{N}(-1)^{n} a_{n}$ is the $N^{\text {th }}$ partial sum of a convergent alternating series, then $\left\|S_{\infty}-S_{N}\right\| \leq\left\|a_{N+1}\right\|$ This means error is less than the next term Integration by Separation Don't forget +C Get y with dy and x with dx				

