typed by Sean Bird, Covenant Christian High School updated April 19, 2005

Basic Derivatives

$$\frac{d}{dx}(x^n) = nx^{n-1}$$
$$\frac{d}{dx}(\sin x) = \cos x$$
$$\frac{d}{dx}(\cos x) = -\sin x$$
$$\frac{d}{dx}(\cos x) = -\sin x$$
$$\frac{d}{dx}(\cos x) = -\sec^2 x$$
$$\frac{d}{dx}(\cot x) = -\csc^2 x$$
$$\frac{d}{dx}(\sec x) = \sec x \tan x$$
$$\frac{d}{dx}(\sec x) = -\csc x \cot x$$
$$\frac{d}{dx}(\csc x) = -\csc x \cot x$$
$$\frac{d}{dx}(\ln u) = \frac{1}{u}\frac{du}{dx}$$
$$\frac{d}{dx}(e^u) = e^u \frac{du}{dx}$$

More Derivatives $\frac{d}{dx}\left(\sin^{-1}u\right) = \frac{1}{\sqrt{1-u^2}}\frac{du}{dx}$ $\frac{d}{dx}(\cos^{-1}x) = \frac{-1}{\sqrt{1-x^2}}$ $\frac{d}{dr}(\tan^{-1}x) = \frac{1}{1+r^2}$ $\frac{d}{dx}\left(\cot^{-1}x\right) = \frac{-1}{1+x^2}$ $\frac{d}{dx}\left(\sec^{-1}x\right) = \frac{1}{|x|\sqrt{x^2-1}}$ $\frac{d}{dx}\left(\csc^{-1}x\right) = \frac{-1}{|x|\sqrt{x^2-1}}$ $\frac{d}{dr}(a^x) = a^x \ln a$ $\frac{d}{dr}(\log_a x) = \frac{1}{r \ln a}$

AP CALCULUS Stuff you MUST know Cold * means topic only on BC **Differentiation Rules Approx. Methods for Integration** Chain Rule $\frac{d}{dx}[f(u)] = f'(u)\frac{du}{dx} OR \frac{dy}{dx} = \frac{dy}{du}\frac{du}{dx}$ Trapezoidal Approximation **Right Riemann Sum Approximations Product Rule** $\frac{d}{dx}(uv) = \frac{du}{dx}v + u\frac{dv}{dx}ORu'v + uv'$ Left Riemann Sum Approximations Midpoint Riemann Sum **Ouotient Rule** Approximations $\frac{d}{dr}\left(\frac{u}{v}\right) = \frac{\frac{du}{dx}v - u\frac{dv}{dx}}{v^2} \quad OR \frac{u'v - uv'}{v^2}$ (+,und,-), or (-,und,+) **AVERAGE VALUE** If the function f(x) is continuous on [a, b]"PLUS A CONSTANT" and the first derivative exists on the interval (a, b), then there exists a number The Fundamental Theorem of x = c on (a, b) such that Calculus $f(c) = \frac{\int_{a}^{b} f(x) dx}{(b-a)}$ $\int^{b} f(x) dx = F(b) - F(a)$ This value f(c) is the "average value" of where F'(x) = f(x)the function on the interval [a, b]. **Corollary to FTC** Solids of Revolution and friends Disk Method $V = \pi \int_{x=a}^{x=b} \left[R(x) \right]^2 dx$ $\frac{d}{dx}\int_{a(x)}^{b(x)}f(t)dt =$ Washer Method f(b(x))b'(x) - f(a(x))a'(x) $V = \pi \int^{b} \left(\left[R(x) \right]^{2} - \left[r(x) \right]^{2} \right) dx$ **Intermediate Value Theorem** General volume equation (not rotated) If the function f(x) is continuous on [a, b], $V = \int^{b} Area(x) \, dx$ and y is a number between f(a) and f(b), then there exists at least one number x = c*Arc Length $L = \int_{a}^{b} \sqrt{1 + [f'(x)]^2} dx$ in the open interval (a, b) such that f(c) = y. $=\int_{a}^{b}\sqrt{[x'(t)]^{2}+[y'(t)]^{2}}dt$ Distance, Velocity, and Acceleration Mean Value Theorem velocity = $\frac{d}{dx}$ (position) acceleration = $\frac{d}{dr}$ (velocity) If the function f(x) is continuous on [a, b], AND the first derivative exists on the *velocity vector = $\left\langle \frac{dx}{dt}, \frac{dy}{dt} \right\rangle$ interval (a, b), then there is at least one number x = c in (a, b) such that $f'(c) = \frac{f(b) - f(a)}{b - a}$ speed = $|v| = \sqrt{(x')^2 + (y')^2}$ * Somewhere the derivative equals the slope displacement = $\int_{t}^{t_f} v dt$ between the endpoints distance = $\int_{\text{initial time}}^{\text{final time}} |v| dt$ **Rolle's Theorem** $\int_{t}^{t_{f}} \sqrt{(x')^{2} + (y')^{2}} dt *$ If the function f(x) is continuous on [a, b], average velocity = AND the first derivative exists on the _ final position - initial position interval (a, b), AND f(a) = f(b), then there is at least one number x = c in (a, b) such total time that $=\frac{\Delta x}{\Delta t}$ f'(c) = 0.

BC TOPICS and important TRIC	G identities and values	
l'Hôpital's Rule	Slope of a Parametric equation	Values of Trigonometric
If $\frac{f(a)}{a} = \frac{0}{a}$ or $= \frac{\infty}{a}$	Given a $x(t)$ and a $y(t)$ the slope is	Functions for Common Angles
$\prod_{a=1}^{n} g(b) = 0 \prod_{a=1}^{n} \infty,$	$dy = \frac{dy}{dt}$	
then $\lim \frac{f(x)}{x} = \lim \frac{f'(x)}{x}$	$\frac{1}{dx} - \frac{1}{\frac{dx}{dt}}$	$\theta \sin \theta \cos \theta \tan \theta$
$\lim_{x \to a} g(x) \lim_{x \to a} g'(x)$		0° 0 1 0
Euler's Method	Polar Curve	$\frac{\pi}{30^{\circ}}$ $\frac{1}{1}$ $\frac{\sqrt{3}}{\sqrt{3}}$
$\frac{dy}{dx}$	For a polar curve $r(\theta)$, the	6,00 2 2 3
If given that dx and that the	AREA Inside a real is $e^{\theta_2} = e^{-(1)^2 + (1)^2}$	<u> </u>
solution passes through (x_o, y_o) ,	$\int_{\theta_1}^{2} \frac{1}{2} [r(\theta)] d\theta$	$\frac{\pi}{4},45^{\circ}$ $\frac{\sqrt{2}}{2}$ $\frac{\sqrt{2}}{2}$ 1
- Use a tangent line to build	where θ_1 and θ_2 are the "first" two times that $r = 0$.	$\frac{4}{53^{\circ}}$ $\frac{2}{4/5}$ $\frac{2}{3/5}$ $\frac{4}{3}$
the curve	The SLOPE of $r(\theta)$ at a given θ is	π $\sqrt{3}$ 1 π
$y = y_1 + \frac{dy}{dx}(x - x_1)$	$x = r\cos\theta$ $y = r\sin\theta$	$\frac{\frac{\pi}{3}}{,60^{\circ}} \frac{\sqrt{3}}{2} \frac{1}{2} \sqrt{3}$
	$\frac{dy}{d\theta} = \frac{\frac{dy}{d\theta}}{d\theta}$	$\frac{\pi}{2},90^{\circ}$ 1 0 " ∞ "
	$dx \frac{dx}{d\theta}$	$\frac{2}{\pi, 180^{\circ}}$ 0 -1 0
Tabular Integration – When one piece	Ratio Test	L'hopitals Rule: When the limit of
is not the derivative of the other $\int \ln x dx =$	The series $\sum_{k=1}^{\infty} a_k$ converges if	0∞
		a function is $\overline{0}$ $\overline{0}$ $\overline{\infty}$
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\lim_{k \to \infty} \left \frac{u_{k+1}}{a_k} \right < 1$	Take the derivative of the top and the
$\int \ln x dx = x \ln x - \int 1 dx$	If the limit equal 1, you know nothing.	derivative of the bottom and then re-evaluate the limit
$\int \ln x dx = x \ln x - x + C$	Interval of convergence (Test endpoints)	
Taylor SeriesIf the function f is "smooth" at $x = a$,then it can be approximated by the n^{th} degree polynomial $f(x) \approx f(a) + f'(a)(x-a)$ $+ \frac{f''(a)}{2!}(x-a)^2 + \dots$ $+ \frac{f''(a)}{2!}(x-a)^2 + \dots$ $+ \frac{f^{(n)}(a)}{n!}(x-a)^n$.Take derivatives, plug in your center anddivide by your factorials.	Lagrange Error Bound If $P_n(x)$ is the n^{th} degree Taylor polynomial of $f(x)$ about c and $ f^{(n+1)}(t) \le M$ for all t between x and c , then $ f(x) - P_n(x) \le \frac{M}{(n+1)!} x-c ^{n+1}$ M=Maximum of the next derivative (x-c) is the distance from center (n+1)! Is the next derivative $ f(x) - P_n(x) $ is the actual error	Sum of an infinite geometric series $S = \frac{1^{st} \text{ term}}{1-r}$ where r is the common ratio
Maclaurin SeriesA Taylor Series about $x = 0$ is calledMaclaurin.	Alternating Series Error Bound	
$e^x = 1 + x + \frac{x^2}{2!} + \frac{x^3}{3!} + \dots$	If $S_N = \sum_{k=1}^{N} (-1)^n a_n$ is the N th partial sum	
$\cos x = 1 - \frac{x^2}{2!} + \frac{x^4}{4!} - \dots$	of a convergent alternating series, then $ S_{\infty} - S_N \le a_{N+1} $	
$\sin x = x - \frac{x^3}{3!} + \frac{x^5}{5!} - \dots$	This means error is less than the next term	
$\frac{1}{1-x} = 1 + x + x^2 + x^3 + \dots$ $\ln(x+1) = x - \frac{x^2}{2} + \frac{x^3}{3} - \frac{x^4}{4} + \dots$	Integration by Separation Don't forget +C Get y with dy and x with dx	