
CALCULUS BC 

Taylor Series and Taylor Polynomials Notes 

Lecture 3:  How to Estimate Error for Taylor Polynomials 

Let’s consider where we are in our study of infinite series. Here’s the checklist of goals we have in this chapter. 

Which ones have we addressed, and to what extent? 

 

In this lecture, we will focus on the fourth bullet point. Let’s recall the last lesson, when we used the fifth-

degree Taylor polynomial for sin x  to estimate sin1: 

 

 

 

Let’s take a look at the partial sums and their errors in relation to the value given by the calculator. Compare the 

error with the next terms.  

 

 

 

 

 

 

 

 

 

Notice that the error in the partial sum is always less than __________________________________________! 

1. All infinite series either converge or diverge. How can you tell whether a given series converges or 

diverges? 

 

2. Given any function, how can it be represented as an infinite series (specifically, an “infinite 

polynomial”)? 

 

3. When you express a function as an infinite series, it usually converges for some values of x , but 

otherwise diverges. How do you find the interval of convergence for a series? 

 

4. Often it’s more practical to work with a finite portion of an infinite series, thus obtaining a good 

approximation of the desired answer. How can you determine how good the approximation is? 



Important Idea:  Without a calculator, we can never be sure exactly how well a Taylor polynomial estimates 

the value of an entire Taylor series. However, we can find an upper bound to the error, so that we can make a 

statement such as, “The estimate is no more than (upper bound) away from the actual value.” 

Consider the sin1 problem again. 

 

 

If we extended the Taylor polynomial one more term, what would that next term be? 

 

 

OK then, fill in the blanks:  The estimate of ________________ for sin1 using the first three non-zero terms of  

the Taylor polynomial is no more than _________________ (the _________ term) away from the actual value.  

How do you know this is true? 

What feature(s) of the series for sin x  allows you to make this conclusion this way? 

 

 

 

 

 

Alternating Series Remainder 

If a series has terms that are 

(1)  ____________________________________ 

 

(2)  ____________________________________,   and  

 

(3)  _____________________________________,  

then the series converges so that it has a sum S.  If the sum S  is approximated by the nth partial sum, nS ,  then the error 

in the approximation, , which equals n nR S S , will be less than the absolute value of the first omitted or truncated 

term.  

In other words, if the three conditions are met, you can approximate the sum of the series by using the nth partial sum, 

nS , and your error will be bounded by the absolute value of the first truncated term. 

 

 



Ex. Let f  be the function defined by  f x  be given by   ln 1
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(a)  First, write the first four nonzero terms and the general term of the Maclaurin series for 
1

1 x
. 

 

 

 

 

 

 

(b)  Now, write the first four nonzero terms and the general term of the Maclaurin series for  ln 1 x  

 

 

 

 

 

 

 

(c)  Next, write the first four nonzero terms and the general term of the Maclaurin series for  f x . 

 

 

 

 

 

 

 

(d)  Let  4P x  be the fourth-degree Taylor polynomial for f  about 0x  . Find an upper bound for    4 2 2P f . 

 

 

 

 

 



Ex. The Taylor series about  x = 2 for a certain function  f  converges to   f x  for all  x  in the    

interval of convergence.  The nth derivative of  f  at  x = 2 is given 
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(a) Write the second-degree Taylor polynomial for  f   about  x = 2 . 

 

 

 

 

 

 

 

(b) Show that the second-degree Taylor polynomial for  f   about  x = 2 approximates   3f  with an    

      error less than 
1

100
. 

 

 

 

 

 

 

 

 

 

Ex.  The function f  has a Taylor series about 1x   that converges to  f x  for all x  in the interval of convergence.  It 

is known that  1 1f  ,  
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1
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f    , and the n th derivative of f  at 1x   is given by    ( ) ( 1)!
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(a)  Write the first four nonzero terms and the general term of the Taylor series for f  about 1x  . 

 

 

 

(b)  The Taylor series for f  about 1x   can be used to represent  1.2f  as an alternating series. Use the first 

three nonzero terms of the alternating series to approximate  1.2f . 

 

 

 

(c)  Show that the approximation found in part (c) is within 0.001 of the exact value of  1.2f . 

 

 

 



What happens if a series is not alternating? What then? How can you find an upper bound for the error in that 

situation? 

Answer:  Very similarly! However, rather than use the actual next term of the series, we start with a formula 

that mimics the next term. First, though, some further explanation of what error is… 

Given:  f x   power series in x 

A partial sum is the sum of the first "few" terms of the series. 

The tail is the rest of the terms of the series after a partial sum. 

the remainder is the number you get by "adding" all the terms in the tail. 

So  f x   partial sum + remainder, or another way to say this is      n nf x P x R x   

The error is the error you make by assuming  f x  the partial sum. 

So the error is the same number as the remainder (obvious, but subtle) 

An error bound is a number known to be greater than the absolute value of the remainder. 

 

Now, consider what Monsieur Lagrange is credited with showing. The LAGRANGE REMAINDER (the 

error) is exactly equal to the first term of the tail, but with its derivative evaluated not at x = c (about which the 

series is expanded) but at some number z which is between c and the value of x at which you are evaluating the 

function. As this value of z comes from (repeated) application of the Mean Value Theorem, there is often no 

way of knowing exactly what z equals. But if you can find a number that is an upper bound for the derivative 

between c and x, then you can find a LAGRANGE ERROR BOUND. 

When applying Taylor’s Theorem, you should not expect to be able to find the exact value of  z.  (If you could 

do this, an approximation would not be necessary.)  Rather, you are trying to find bounds for 
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f z
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which you are able to tell how large the remainder  nR x  is.  This bound is called Lagrange’s form of the 

remainder or the Lagrange error bound. 

 

 

 

Taylor’s Theorem 

If  f x  is expanded as a Taylor series about x c  and x  is a number in the interval of convergence, then 

there is a number z  between a  and x  such that the remainder, 
nR , after the partial sum 

nS , is given by the 

Lagrange form 
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If M  is the maximum value of  1nf x  on the interval between c  and x , then the Lagrange error bound 

is 
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Ex. 1  The function  f  has derivatives of all orders for all real numbers x.  Assume that 

                 2 6, 2 4, 2 7, 2 8.f f f f        

(a) Write the third-degree Taylor polynomial for  f  about  x = 2, and use it to approximate  2.3 .f    

     Give three decimal places. 

 

 

 

 

 

(b) The fourth derivative of  f  satisfies the inequality     4
9f x   for all  x  in the closed  

      interval [2, 2.3].  Use this information to find a bound for the error in the approximation  

      of   2.3f  found in part (a). 

 

 

 

 

 

 

 

(c) Use your answers to parts (a) and (b) to find an interval [a, b] such that   2.3 .a f b    Give three  

     decimal places. 

 

 

 

 

 

 

(d) Could   2.3f  equal 6.922?  Explain why or why not. 

 

 

 

 

 

 

(e) Could   2.3f  equal 6.927?  Explain why or why not. 

 

 

 

 

 

 

 

 

 

 

 



(2, 3) 
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Ex. 2  Let  f  be the function given by    sin 5
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 and let   P x  be the third-degree Taylor 

polynomial for  f  about  x = 0. 

 

(a) Find  P x . 

 

 

 

 

 

 

 

 

 

(b) Use the Lagrange error bound to show that  
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Ex. 2  Let  f  be a function that has derivatives of all orders.  Assume  
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f x  on [2, 3] is shown on the right.  The graph of 
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increasing on [2, 3]. 

(a) Find the third-degree Taylor polynomial  P x about  x = 2 for the function  f. 

 

             

        Graph of 
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(b) Use your answer to part (a) to estimate the value of   2.8 .f                        

 

 

 

(c) Use information from the graph of 
   
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y f x  to show that    
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