CALCULUS BC WORKSHEET 3 ON SERIES

Work all problems on separate paper. You may use your calculator on problems 2 and 4 only.

1. Let g be the function given by
$$g(x) = \frac{\sin x}{x}$$
.

- (a) Write the first four nonzero terms and the general term for the series for $\sin x$ centered at x = 0.
- (b) Use your results from part (a) to write the first four nonzero terms and the general term for the series for g(x).
- (c) Use the first two terms of your series in part (b) to estimate g(1).
- (d) Show that the approximation found in part (c) approximates g(1) with error less than $\frac{1}{100}$.

2. The Taylor series about x = 5 for a certain function f converges to f(x) for all x in the interval of convergence. The *n*th derivative of f at x = 5 is given by $f^{(n)}(5) = \frac{(-1)^n n!}{2^n (n+2)}$ and $f(5) = \frac{1}{2}$. Show that the sixth-degree Taylor polynomial for f about x = 5 approximates f(6) with error less than $\frac{1}{1000}$.

- 3. Let f be a function having derivatives of all orders for all real numbers. The third-degree Taylor polynomial for f about x = 2 is given by $T(x) = 7 9(x-2)^2 3(x-2)^3$.
 - (a) Does f have a local maximum, local minimum, or neither at x = 2? Justify your answer.

(b) Use
$$T(x)$$
 to find an approximation for $f(0)$

- (c) The fourth derivative of f satisfies the inequality $|f^{(4)}(x)| \le 6$ for all x in the closed interval [0,2]. Use the Lagrange error bound on the approximation to f(0) found in part (b) to explain why f(0) must be negative.
- 4. The function f has derivatives of all orders for all real numbers x. Assume that f(2) = -3, f'(2) = 5, f''(2) = 3, and f'''(2) = -8.
 - (a) Write the third-degree Taylor polynomial for f about x = 2 and use it to approximate f(1.5).
 - (b) The fourth derivative of f satisfies the inequality $|f^{(4)}(x)| \le 3$ for all x in the closed interval [1.5,2]. Use the Lagrange error bound on the approximation to f(1.5) found in part (a) to explain why $f(1.5) \ne -5$.

5. Let f be the function given by $f(x) = \sin\left(5x + \frac{\pi}{4}\right)$, and let P(x) be the third-degree polynomial for `f

about x = 0. Use the Lagrange error bound to show that $\left| f\left(\frac{1}{10}\right) - P\left(\frac{1}{10}\right) \right| < \frac{1}{100}$.

6. The function f is defined by the power series

$$f(x) = \sum_{n=0}^{\infty} \frac{(x-2)^n}{3^n(n+1)} = 1 + \frac{x-2}{3\cdot 2} + \frac{(x-2)^2}{3^2 \cdot 3} + \frac{(x-2)^3}{3^3 \cdot 4} + \dots + \frac{(x-2)^n}{3^n(n+1)} + \dots$$

for all real numbers x for which the series converges.

- (a) Find the value of f''(2).
- (b) Use the first three nonzero terms of the power series for f to approximate f(1). Use the alternating series error bound to show that this approximation differs from f(1) by less than $\frac{1}{100}$.

7. (Multiple Choice) The Taylor series for a function f about x = 0 converges for $-1 \le x \le 1$. The *n* th-degree Taylor polynomial for f about x = 0 is given by $P_n(x) = \sum_{k=1}^n (-1)^k \frac{x^k}{k^2 + k + 1}$. Of the following, which is the smallest number M for which the alternating series error bound guarantees that $|f(1) - P_4(1)| \le M$?

(A)
$$\frac{1}{5!} \cdot \frac{1}{31}$$
 (B) $\frac{1}{4!} \cdot \frac{1}{21}$ (C) $\frac{1}{31}$ (D) $\frac{1}{21}$

- 8. The Taylor series for a function f about x = 0 is given by $\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{(2n+1)!} x^{2n}$ and converges to f for all real numbers x. If the fourth-degree Taylor polynomial for f about x = 0 is used to approximate $f\left(\frac{1}{2}\right)$, what is the alternating series error bound?
- 9. Let f and g be the functions given by $f(x) = xe^{x^3}$ and $g(x) = \int_0^x f(t) dt$. The graph of $f^{(5)}$, the fifth derivative of f, is shown above for $-\frac{1}{2} \le x \le \frac{1}{2}$.
 - (a) Write the first four nonzero terms and the general term of the Taylor series for e^x about x = 0.

Write the first four nonzero terms and the general term of the Taylor series for f about x = 0.

- -0.5 O 0.5Graph of $f^{(5)}$
- (b) Write the first four nonzero terms of the Taylor series for g about x = 0.

(c) Let $P_5(x)$ be the fifth-degree Taylor polynomial for g about x = 0. Use the Lagrange error bound along with information from the given graph to find an upper bound on $\left| P_5\left(\frac{1}{2}\right) - g\left(\frac{1}{2}\right) \right|$.