CALCULUS BC

WORKSHEET 3 ON SERIES

Work all problems on separate paper. You may use your calculator on problems 2 and 4 only.

1. Let g be the function given by $g(x)=\frac{\sin x}{x}$.
(a) Write the first four nonzero terms and the general term for the series for $\sin x$ centered at $x=0$.
(b) Use your results from part (a) to write the first four nonzero terms and the general term for the series for $g(x)$.
(c) Use the first two terms of your series in part (b) to estimate $g(1)$.
(d) Show that the approximation found in part (c) approximates $g(1)$ with error less than $\frac{1}{100}$.
2. The Taylor series about $x=5$ for a certain function f converges to $f(x)$ for all x in the interval of convergence. The nth derivative of f at $x=5$ is given by $f^{(n)}(5)=\frac{(-1)^{n} n!}{2^{n}(n+2)}$ and $f(5)=\frac{1}{2}$. Show that the sixth-degree Taylor polynomial for f about $x=5$ approximates $f(6)$ with error less than $\frac{1}{1000}$.
3. Let f be a function having derivatives of all orders for all real numbers. The third-degree Taylor polynomial for f about $x=2$ is given by $T(x)=7-9(x-2)^{2}-3(x-2)^{3}$.
(a) Does f have a local maximum, local minimum, or neither at $x=2$? Justify your answer.
(b) Use $T(x)$ to find an approximation for $f(0)$.
(c) The fourth derivative of f satisfies the inequality $\left|f^{(4)}(x)\right| \leq 6$ for all x in the closed interval $[0,2]$. Use the Lagrange error bound on the approximation to $f(0)$ found in part (b) to explain why $f(0)$ must be negative.
4. The function f has derivatives of all orders for all real numbers x. Assume that $f(2)=-3, f^{\prime}(2)=5$, $f^{\prime \prime}(2)=3$, and $f^{\prime \prime \prime}(2)=-8$.
(a) Write the third-degree Taylor polynomial for f about $x=2$ and use it to approximate $f(1.5)$.
(b) The fourth derivative of f satisfies the inequality $\left|f^{(4)}(x)\right| \leq 3$ for all x in the closed interval $[1.5,2]$. Use the Lagrange error bound on the approximation to $f(1.5)$ found in part (a) to explain why $f(1.5) \neq-5$.
5. Let f be the function given by $f(x)=\sin \left(5 x+\frac{\pi}{4}\right)$, and let $P(x)$ be the third-degree polynomial for ${ }^{`} f$ about $x=0$. Use the Lagrange error bound to show that $\left|f\left(\frac{1}{10}\right)-P\left(\frac{1}{10}\right)\right|<\frac{1}{100}$.
6. The function f is defined by the power series

$$
f(x)=\sum_{n=0}^{\infty} \frac{(x-2)^{n}}{3^{n}(n+1)}=1+\frac{x-2}{3 \cdot 2}+\frac{(x-2)^{2}}{3^{2} \cdot 3}+\frac{(x-2)^{3}}{3^{3} \cdot 4}+\ldots+\frac{(x-2)^{n}}{3^{n}(n+1)}+\ldots
$$

for all real numbers x for which the series converges.
(a) Find the value of $f^{\prime \prime}(2)$.
(b) Use the first three nonzero terms of the power series for f to approximate $f(1)$. Use the alternating series error bound to show that this approximation differs from $f(1)$ by less than $\frac{1}{100}$.
7. (Multiple Choice) The Taylor series for a function f about $x=0$ converges for $-1 \leq x \leq 1$. The n th-degree Taylor polynomial for f about $x=0$ is given by $P_{n}(x)=\sum_{k=1}^{n}(-1)^{k} \frac{x^{k}}{k^{2}+k+1}$. Of the following, which is the smallest number M for which the alternating series error bound guarantees that $\left|f(1)-P_{4}(1)\right| \leq M$?
(A) $\frac{1}{5!} \cdot \frac{1}{31}$
(B) $\frac{1}{4!} \cdot \frac{1}{21}$
(C) $\frac{1}{31}$
(D) $\frac{1}{21}$
8. The Taylor series for a function f about $x=0$ is given by $\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{(2 n+1)!} x^{2 n}$ and converges to f for all real numbers x. If the fourth-degree Taylor polynomial for f about $x=0$ is used to approximate $f\left(\frac{1}{2}\right)$, what is the alternating series error bound?
9. Let f and g be the functions given by $f(x)=x e^{x^{3}}$ and $g(x)=\int_{0}^{x} f(t) d t$. The graph of $f^{(5)}$, the fifth derivative of f, is shown above for $-\frac{1}{2} \leq x \leq \frac{1}{2}$.
(a) Write the first four nonzero terms and the general term of the Taylor series for e^{x} about $x=0$.

Write the first four nonzero terms and the general term of the Taylor series for f about $x=0$.
(b) Write the first four nonzero terms of the Taylor series for g about $x=0$.
(c) Let $P_{5}(x)$ be the fifth-degree Taylor polynomial for g about $x=0$. Use the Lagrange error bound along with information from the given graph to find an upper bound on $\left|P_{5}\left(\frac{1}{2}\right)-g\left(\frac{1}{2}\right)\right|$.

