1. (a) $x-\frac{x^{3}}{3!}+\frac{x^{5}}{5!}-\frac{x^{7}}{7!}+\ldots+\frac{(-1)^{n} x^{2 n+1}}{(2 n+1)!}+\ldots$
(b) $1-\frac{x^{2}}{3!}+\frac{x^{4}}{5!}-\frac{x^{6}}{7!}+\ldots+\frac{(-1)^{n} x^{2 n}}{(2 n+1)!}+\ldots$
(c) $1-\frac{1}{6} \approx .83333$
(d) (Your explanation should include the value $\frac{1}{120}$).
2. (Your explanation should include the value $\frac{1}{1152}$).
3. (a) $x=2$ is a local maximum since $f^{\prime}(2)=0$ and $f^{\prime \prime}(2)<0$ by the Second Derivative Test.
(b) -5
(c) (You should be able to argue that the highest value $f(0)$ could have is -1).
4. (a) $-3+5(x-2)+\frac{3}{2}(x-2)^{2}-\frac{4}{3}(x-2)^{3} ;-4.958$
(b) (You should be able to show that the lowest value $f(1.5)$ could have is -4.966$)$.
5. (Your explanation should include the value $\frac{1}{384}$).
6. (a) $\frac{2}{27}$
(b) $\frac{47}{54}$ (this is a simplified answer). Your explanation for the second part should include the value $\frac{1}{108}$.
7. C
8. $\frac{1}{2^{6} \cdot 7!}$
9. (a) $e^{x}=1+x+\frac{x^{2}}{2!}+\frac{x^{3}}{3!}+\ldots+\frac{x^{n}}{n!}+\ldots$

$$
x e^{x^{3}}=x+x^{4}+\frac{x^{7}}{2!}+\frac{x^{10}}{3!}+\ldots+\frac{x^{3 n+1}}{n!}+\ldots
$$

(b) $\frac{x^{2}}{2}+\frac{x^{5}}{5}+\frac{x^{8}}{16}+\frac{x^{11}}{66}$
(c) $\frac{500}{6!\cdot 2^{6}}$

