Day 3: Review of Motion Along a Line

My students study motion along a line early in the year, so this assignment is a review for them. I like to spend a day on motion along a line as a segue into motion along a curve. For an excellent introduction to motion along a line, see the Curriculum Module on motion by Dixie Ross at AP Central. . (http://apcentral.collegeboard.com/apc/public/ repository/AP_CurricModCalculusMotion.pdf)

Day 3 Homework

The following problems are from old AP Exams and the sample multiple-choice problems in the Course Description, available at AP Central (http://apcentral.collegeboard.com/apc/public/courses/teachers_corner/2118.html).

Multiple-Choice Items:

1. 2003 AP Calculus AB Exam, Item 25 (no calculator):

A particle moves along the x-axis so that at time $t \geq 0$ its position is given by
$x(t)=2 t^{3}-21 t^{2}+72 t-53$. At what time t is the particle at rest?
(A) $t=1$ only
(B) $t=3$ only
(C) $t=\frac{7}{2}$ only
(D) $t=3$ and $t=\frac{7}{2}$
(E) $t=3$ and $t=4$
2. 1998 AP Calculus AB Exam, Item 24 (no calculator):

The maximum acceleration attained on the interval $0 \leq t \leq 3$ by the particle whose velocity is given by $v(t)=t^{3}-3 t^{2}+12 t+4$ is
(A) 9
(B) 12
(C) 14
(D) 21
(E) 40
3. AP Calculus AB , sample multiple-choice Item 9 (no calculator):

The position of a particle moving along a line is given by
$s(t)=2 t^{3}-24 t^{2}+90 t+7$ for $t \geq 0$.
For what values of t is the speed of the particle increasing?
(A) $3<t<4$ only
(B) $t>4$ only
(C) $t>5$ only
(D) $0<t<3$ and $t>5$
(E) $3<t<4$ and $t>5$
4. 2003 AP Calculus AB Exam, Item 76 (calculator):

A particle moves along the x-axis so that at any time $t \geq 0$, its velocity is given by $v(t)=3+4.1 \cos (0.9 t)$. What is the acceleration of the particle at time $t=4$?
(A) -2.016
(B) -0.677
(C) 1.633
(D) 1.814
(E) 2.97
5. 2003 AP Calculus AB Exam, Item 91 (calculator):

A particle moves along the x-axis so that at any time $t>0$, its acceleration is given by $a(t)=\ln \left(1+2^{t}\right)$. If the velocity of the particle is 2 at time $t=1$, then the velocity of the particle at time $t=2$ is
(A) 0.462
(B) 1.609
(C) 2.555
(D) 2.886
(E) 3.346
6. AP Calculus AB , sample multiple-choice Item 19 (calculator):

Two particles start at the origin and move along the x-axis. For $0 \leq t \leq 10$, their respective position functions are given by $x_{1}=\sin t$ and $x_{2}=e^{-2 t}-1$. For how many values of t do the particles have the same velocity?
(A) None
(B) One
(C) Two
(D) Three
(E) Four
7. AP Calculus AB , sample multiple-choice Item 15 (calculator):

A particle travels along a straight line with a velocity of $v(t)=3 e^{(-t / 2)} \sin (2 t)$ meters per second. What is the total distance traveled by the particle during the time interval $0 \leq t \leq 2$ seconds?
(A) 0.835
(B) 1.850
(C) 2.055
(D) 2.261
(E) 7.025

Free-Response Questions:

8. 2004 AP Calculus AB Exam, FRQ 3 (calculator):

A particle moves along the y-axis so that its velocity at time $t \geq 0$ is given by $v(t)=1-\tan ^{-1}\left(e^{t}\right)$. At time $t=0$, the particle is at $y=-1$. (Note: $\tan ^{-1} x=\arctan x$.)
(a) Find the acceleration of the particle at time $t=2$.
(b) Is the speed of the particle increasing or decreasing at time $t=2$? Give a reason for your answer.
(c) Find the time $t \geq 0$ at which the particle reaches its highest point. Justify your answer.
(d) Find the position of the particle at time $t=2$. Is the particle moving toward the origin or away from the origin at time $t=2$? Justify your answer.
9. 2006 AP Calculus AB/BC Exams, Item 4 (no calculator):

t (seconds)	0	10	20	30	40	50	60	70	80
$v(t)$ (feet per second)	5	14	22	29	35	40	44	47	49

Rocket A has positive velocity $v(t)$ after being launched upward from an initial height of 0 feet at time $t=0$ seconds. The velocity of the rocket is recorded for selected values of t over the interval $0 \leq t \leq 80$ seconds, as shown in the table above.
(a) Find the average acceleration of rocket A over the time interval $0 \leq t \leq 80$ seconds. Indicate units of measure.
(b) Using correct units, explain the meaning of $\int_{10}^{70} v(t) d t$ in terms of the rocket's flight. Use a midpoint Riemann sum with 3 subintervals of equal length to approximate $\int_{10}^{70} v(t) d t$.
(c) Rocket B is launched upward with an acceleration of $a(t)=\frac{3}{\sqrt{t+1}}$ feet per second. At time $t=0$ seconds, the initial height of the rocket is 0 feet, and the initial velocity is 2 feet per second. Which of the two rockets is traveling faster at time $t=80$ seconds? Explain your answer.

Answers to Day 3 Homework

1. Since $x^{\prime}(t)=6 t^{2}-42 t+72=6\left(t^{2}-7 t+12\right)=6(t-3)(t-4)=0$ when $t=3$ and when $t=4$, the answer is E .
2. Note that $a(t)=3 t^{2}-6 t+12$, so that $a^{\prime}(t)=6 t-6=0$ when $t=1$. Computing the acceleration at the critical number and at the endpoints of the interval, we have $a(0)=12, a(1)=9$, and $a(3)=21$. The maximum acceleration is 21 , so the answer is D .
3. Note that $v(t)=6 t^{2}-48 t+90=6(t-3)(t-5)$ and $a(t)=12 t-48=12(t-4)$. The speed is increasing on $3<t<4$, where the velocity and the acceleration are both negative, and also for $t>5$, where the velocity and the acceleration are both positive, so the answer is E .
4. Since $\frac{d}{d t}[3+4.1 \cos (0.9 t)]_{t-4}=1.633$, the answer is C .
5. Since $v(2)=2+\int_{1}^{2} \ln \left(1+2^{t}\right) d t=3.346$, the answer is E .
6. First find $\frac{d}{d t}[\sin t]=\cos t$ and $\frac{d}{d t}\left[e^{-2 t}\right]=-2 e^{-2 t}$. Then graph $y_{1}=\cos x$ and $y_{2}=$ $-2 e^{-2 x}$ in function mode with an x-window of $[0,10]$ and a y - window of $[-1,1]$. The two graphs intersect at three points, so the answer is D .
7. Distance $=\int_{0}^{2}\left|v(t) d t=\int_{0}^{2}\right| 3 e^{(-t / 2)} \sin (2 t) \mid d t=2.261$, so the answer is D.
8. (a) $a(2)=v^{\prime}(2)=-0.132$ or -0.133 .
(b) $v(2)=-0.436$. Since $a(2)<0$, and $v(2)<0$, the speed is increasing.
(c) Note that $v(t)=0$ when $\tan ^{-1}\left(e^{t}\right)=1$. The only critical number for y is $t=\ln (\tan 1)=0.443$. Since $v(t)>0$ for $0 \leq t<\ln (\tan 1)$ and $v(t)<0$ for $t>\ln (\tan 1), y(t)$ has an absolute maximum at $t=0.443$.
(d) $y(2)=-1+\int_{0}^{2} v(t) d t=-1.360$ or -1.361 .

Since $v(2)<0$ and $y(2)<0$, the particle is moving away from the origin.
9. (a) Average acceleration of rocket A is

$$
\frac{v(80)-v(0)}{80-0}=\frac{49-5}{80}=\frac{11}{20} \mathrm{ft} / \mathrm{sec}^{2} .
$$

(b) Since the velocity is positive, $\int_{10}^{70} v(t) d t$ represents the distance, in feet, traveled by rocket A from $t=10$ seconds to $t=70$ seconds. A midpoint Riemann sum is

$$
20[v(20)+v(40)+v(60)]=20(22+35+44)=2020 \mathrm{ft} .
$$

(c) Let $v_{B}(t)$ be the velocity of rocket B at time t. Then
$v_{B}(t)=\int \frac{3}{\sqrt{t+1}} d t=6 \sqrt{t+1}+C$. Since $2=v_{B}(0)=6+C$, then $C=-4$ and $v_{B}(t)=6 \sqrt{t+1}-4$. Hence, $v_{B}(80)=50>49=v(80)$ and Rocket B is traveling faster at time $t=80$ seconds.

