Summary of Tests for Convergence of Infinite Series

<i>n</i> -th Term Test	$\sum_{n=1}^{\infty} a_n \text{ converges} \implies \lim_{n \to \infty} a_n = 0.$
	$\lim_{n\to\infty}a_n\neq 0 \implies \sum_{n=1}^{\infty}a_n \text{ diverges.}$
Geometric series	$\sum_{i=1}^{\infty} ar^{i-1}$ converges if and only if $ r < 1$. If the series converges,
	its sum is $\frac{a}{1-r}$
Integral Test	f(x) is continuous, positive, and decreasing.
	$\sum_{n=1}^{\infty} f(n) \text{ converges } \Leftrightarrow \int_{M}^{\infty} f(x) dx \text{ converges (for some } M).$
<i>p</i> -Series	$\sum_{n=1}^{\infty} \frac{1}{n^p} \text{ converges } \Leftrightarrow p > 1.$
Comparison Test	$0 < a_n < b_n.$
	$\sum_{n=1}^{\infty} b_n$ converges $\Rightarrow \sum_{n=1}^{\infty} a_n$ converges.
	$\sum_{n=1}^{\infty} a_n$ diverges $\Rightarrow \sum_{n=1}^{\infty} b_n$ diverges.
Limit Comparison	$a_n > 0$ and $b_n > 0$
Test	$\lim_{n \to \infty} \frac{a_n}{b_n} > 0 \left(\sum_{n=1}^{\infty} a_n \text{ converges} \Leftrightarrow \sum_{n=1}^{\infty} b_n \text{ converges} \right)$
	$\lim_{n \to \infty} \frac{a_n}{b_n} = 0 \text{ and } \sum_{n=1}^{\infty} b_n \text{ converges } \Rightarrow \sum_{n=1}^{\infty} a_n \text{ converges}$
	$\lim_{n \to \infty} \frac{a_n}{b_n} = \infty \text{ and } \sum_{n=1}^{\infty} b_n \text{ diverges } \Rightarrow \sum_{n=1}^{\infty} a_n \text{ diverges}$
Ratio Test	$\lim_{n \to \infty} \left \frac{a_{n+1}}{a_n} \right < 1 \implies \sum_{n=1}^{\infty} a_n \text{ converges.}$
	$\lim_{n \to \infty} \left \frac{a_{n+1}}{a_n} \right > 1 \implies \sum_{n=1}^{\infty} a_n \text{ diverges.}$
	$\lim_{n \to \infty} \left \frac{a_{n+1}}{a_n} \right = 1 \implies \text{can't tell.}$
Alternating Series Test	$a_n > 0$, decreasing, $\lim_{n \to \infty} a_n = 0 \implies \sum_{n=1}^{\infty} (-1)^{n-1} a_n$ converges.

An additional test for convergence is the root test, but this is not tested on AP Exams.