CALCULUS BC
WORKSHEET ON CONCAVITY AND SECOND DERIVATIVE TEST
Work the following on notebook paper. Do not use your calculator.
On problems 1-4, find the points of inflection and discuss the concavity of the graph of the function.

1. $f(x)=-x^{4}+24 x^{2}$
2. $f(x)=\frac{1}{20} x^{5}-\frac{1}{6} x^{4}$
3. $f(x)=x(x-4)^{3}$
4. $f(x)=x+2 \cos x,[0,2 \pi]$
5. Given $f(x)=x^{3}+5 x^{2}-8 x+7$. Use the Second Derivative Test to find whether f has a local maximum or a local minimum at $x=-4$. Justify your answer.
6. Given $f(x)=\sqrt{3} x-2 \sin x$. Use the Second Derivative Test to find whether f has a local maximum or a local minimum at $x=\frac{\pi}{6}$. Justify your answer.

On problems $7-9$, find the critical points of each function, and determine whether they are relative maximums or relative minimums by using the Second Derivative Test whenever possible.
7. $f(x)=x^{3}-3 x^{2}+3$
8. $f(x)=x+\frac{4}{x}$
9. $f(x)=\sin x-\cos x, 0 \leq x \leq 2 \pi$
10. Consider the curve given by $x^{2}+4 y^{2}=7+3 x y$.
(a) Show that $\frac{d y}{d x}=\frac{3 y-2 x}{8 y-3 x}$.
(b) Show that there is a point P with x-coordinate 3 at which the line tangent to the curve at P is horizontal. Find the y-coordinate of P.
(c) Find the value of $\frac{d^{2} y}{d x^{2}}$ at the point P found in part (b). Does the curve have a local maximum, a local minimum, or neither at point P ? Justify your answer.

On problems 11-12, the graph of the derivative, f^{\prime}, of a function f is shown.
(a) On what interval(s) is f increasing or decreasing? Justify your answer.
(b) At what value(s) of x does f have a local maximum or local minimum? Justify your answer.

12.

13. The graph of the second derivative, $f^{\prime \prime}$, of a function f is shown. State the x-coordinates of the inflection points of f. Justify your answer.

14. For what values of a and b does the function $f(x)=x^{3}+a x^{2}+b x+2$ have a local maximum when $x=-3$ and a local minimum when $x=-1$?
15. The graph of a function f is shown on the right.

Fill in the chart with,+- , or 0 .

Point	f	f^{\prime}	$f^{\prime \prime}$
A			
B			
C			

