Block: _____ Seat: ____

Ch 6 MC Practice

Multiple Choice

Identify the choice that best completes the statement or answers the question.

1. Which of the following is a solution of the differential equation 7y'' + 7y = 0?

a.
$$e^{-3x} + e^x$$

b.
$$-C_1 e^{-x} \cos x + C_2 e^{-x} \sin x$$

c.
$$-C_1 \cos x + C_2 \sin x$$

d.
$$-\cos x \ln |\sec x + \tan x|$$

e.
$$x^2 e^x - 3x^2$$

2. Which of the following is a solution of the differential equation $xy' - 4y = x^5 e^x$?

a.
$$y = 4x^5 e^{2x}$$

b.
$$y = 6e^{2x} - 7\sin 2x$$

c.
$$y = x^4 e^x$$

d.
$$v = 5e^{-2x}$$

e.
$$y = \ln x$$

3. Find the particular solution of the differential equation 3x + 20yy' = 0 that satisfies the initial condition y = 5 when x = 2, where $3x^2 + 20y^2 = C$ is the general solution.

a.
$$3x^2 + 20y^2 = 504$$

b.
$$3x^2 + 20y^2 = 155$$

c.
$$3x^2 + 20y^2 = 112$$

d.
$$3x^2 + 20y^2 = 37$$

e.
$$3x^2 + 20y^2 = 512$$

ID: A

4. Use integration to find a general solution of the differential equation.

$$\frac{dy}{dx} = 2x^2 + 5x$$

a.
$$y = 2x^3 + 5x^2 + C$$

b.
$$y = 2x^2 + 5x + C$$

c. $y = 4x + 5 + C$

c.
$$y = 4x + 5 + C$$

d.
$$y = \frac{2}{3}x^3 + \frac{5}{2}x^2 + C$$

e.
$$y = 2x^2 + 5 + C$$

5. Use integration to find a general solution of the differential equation $\frac{dy}{dx} = \frac{3x}{3+x^2}$.

a.
$$y = \frac{3}{2} \ln \left(\left| 3 + x^2 \right| \right) + C$$

b.
$$y = \frac{3}{2x} \ln \left(\left| 6 + x^2 \right| \right) + C$$

c.
$$y = \frac{6}{x^2} \ln \left(\left| 3 + x^2 \right| \right) + C$$

d.
$$y = \frac{3}{x \ln\left(\left|3 + x^2\right|\right)} + C$$

e.
$$y = \frac{3x^2}{\ln\left(\left|3 + x^2\right|\right)} + C$$

Name: _____

ID: A

____ 6. Use integration to find a general solution of the differential equation $\frac{dy}{dx} = 13x\cos\left(8x^2\right)$.

a.
$$y = \frac{13x\sin\left(16x^2\right)}{2x} + C$$

$$b. \quad y = \frac{13x\cos\left(8x^2\right)}{16} + C$$

$$c. \quad y = \frac{13\sin\left(8x^2\right)}{16} + C$$

$$d. \quad y = \frac{13\cos\left(8x^2\right)}{16x} + C$$

$$e. \quad y = \frac{13\sin\left(16x^2\right)}{4} + C$$

7. Use integration to find a general solution of the differential equation.

$$\frac{dy}{dx} = x\sqrt{4 - x^2}$$

a.
$$y = -\frac{1}{3}x(4-x^2)^{\frac{3}{2}} + C$$

b.
$$y = -\frac{1}{5}x(4-x^2)^{\frac{5}{2}} + C$$

c.
$$y = -\frac{1}{3} \left(4 - x^2 \right)^{\frac{3}{2}} + C$$

d.
$$y = \frac{1}{5}x(4-x^2)^{\frac{5}{2}} + C$$

e.
$$y = \frac{1}{3} \left(4 - x^2 \right)^{\frac{3}{2}} + C$$

Name:

ID: A

8. Use integration to find a general solution of the differential equation .

$$\frac{dy}{dx} = x\sqrt{x - 15}$$

a.
$$y = 2(x-15)^2(30-x) + C$$

b.
$$y = \frac{2}{5}(x-15)^3(5+x) + C$$

c.
$$y = \frac{1}{5}(x-15)^{2/3}(10-x) + C$$

d.
$$y = (x-15)^{3/2} (15+x) + C$$

e.
$$y = \frac{2}{5} (x - 15)^{3/2} (10 + x) + C$$

9. Use integration to find a general solution of the differential equation.

$$\frac{dy}{dx} = x^{10}e^{x^{11}}$$

a.
$$y = \frac{1}{10}e^{x^{11}} + C$$

b.
$$y = \frac{1}{11}e^{x^{11}} + C$$

c.
$$y = \frac{x^{11}}{11}e^{x^{11}} + C$$

d.
$$y = 11e^{x^{11}} + C$$

e.
$$y = 10e^{x^{11}} + C$$

___ 10. Solve the differential equation.

$$\frac{dy}{dx} = x + 8$$

a.
$$y = \frac{1}{2}x^2 - 8x + C$$

b.
$$y = \frac{1}{2}x^2 + 8x + C$$

$$c. \quad y = x^2 - 8x + C$$

d.
$$y = -\frac{1}{2}x^2 - 8x + C$$

e.
$$y = x^2 + 8x + C$$

Name:

ID: A

____ 11. Solve the differential equation.

$$y' = \frac{-2x}{y}$$

a.
$$y^2 = 2x^2 + C$$

b.
$$2 \ln y = -2x^2 + C$$

$$c. \quad 2\ln y = 2x^3 + C$$

d.
$$v^2 = -2x^2 + C$$

e.
$$y^2 = -2x^3 + C$$

____ 12. Solve the differential equation $y' = \frac{\sqrt{x}}{2y}$.

a.
$$2y^2 = 4x^{\frac{3}{2}} + C$$

b.
$$6y^2 = 4x^{\frac{3}{2}} + C$$

c.
$$6y^2 = 2x^{\frac{3}{2}} + C$$

d.
$$4y^2 = 6x^{\frac{3}{2}} + C$$

e.
$$4y^2 = 2x^{\frac{3}{2}} + C$$

____ 13. Write and solve the differential equation that models the following verbal statement:

The rate of change of Y with respect to s is proportional to 50-s.

a.
$$\frac{dY}{ds} = k(50-s)^{-1}$$
, $Y = -k\ln(50-s)^2 + C$

b.
$$\frac{dY}{ds} = k(50-s)^{-1}, Y = -k(50-s) + C$$

c.
$$\frac{dY}{ds} = k(50-s), Y = -\frac{k}{2}(50-s)^2 + C$$

d.
$$\frac{dY}{ds} = k(50-s)^3$$
, $Y = -\frac{k}{4}(50-s)^4 + C$

e.
$$\frac{dY}{ds} = k(50-s)^2$$
, $Y = -\frac{k}{3}(50-s)^3 + C$

Name:

ID: A

14. Find the function y = f(t) passing through the point (0,15) with the first derivative $\frac{dy}{dt} = \frac{1}{4}t$.

a.
$$y(t) = \frac{t^2}{8} + 15$$

b.
$$y(t) = 8t^2 + 15$$

c. $y(t) = 4t + 15$

c.
$$y(t) = 4t + 15$$

d.
$$y(t) = \frac{t^2}{4} + 15$$

e.
$$y(t) = \frac{t}{4} + 15$$

15. Find the function y = f(t) passing through the point (0,12) with the first derivative $\frac{dy}{dt} = \frac{6}{7}y$.

a.
$$y(t) = e^{\frac{6}{7}t^2} + 12$$

b.
$$y(t) = \frac{6}{7}t^2 + 12$$

c.
$$y(t) = 12e^{\frac{6}{7}t^2}$$

d.
$$y(t) = 12e^{\frac{6}{7}t}$$

e.
$$y(t) = e^{\frac{6}{7}t} + 12$$

16. Write and solve the differential equation that models the following verbal statement. Evaluate the solution at the specified value of the independent variable, rounding your answer to four decimal places:

The rate of change of P is proportional to P. When t = 0, P = 60 and when t = 5, P = 84. What is the value of P when t = 11?

a.
$$P(11) = 131.9962$$

b.
$$P(11) = 129.5362$$

c.
$$P(11) = 122.0362$$

d.
$$P(11) = 125.7862$$

e.
$$P(11) = 116.8662$$

____ 17. The rate of change of N is proportional to N. When t = 0, N = 200 and when t = 1, N = 360. What is the value of N when t = 4? Round your answer to three decimal places.

- a. 2,129.520
- b. 2,099.520
- c. 2,049.520
- d. 491.383
- e. 262,440.000

____ 18. Find the exponential function $y = Ce^{kx}$ that passes through the two given points. Round your values of C and k to four decimal places.

- a. $v = 5e^{-0.4159x}$
- b. $y = 5e^{-0.5756x}$
- c. $y = 5e^{0.2266x}$
- d $v = 5e^{0.2763x}$
- e $v = 5e^{-3.6889x}$

Name: _____

ID: A

____ 19. Find the general solution of the differential equation $\frac{dy}{dx} = \frac{5x^2}{8y^2}$.

a.
$$y = \frac{5}{8}x^3 + C$$

b.
$$y = \sqrt[3]{\frac{5}{8}x^3 + C}$$

c.
$$y = \sqrt{\frac{8}{5}x^3 + C}$$

d.
$$y = \sqrt[3]{\frac{x^2}{8} + C}$$

e.
$$y = \sqrt[3]{5x^3 + 8C}$$

20. Find the particular solution of the differential equation $\frac{dr}{ds} = e^{r-7s}$ that satisfies the initial condition r(0) = 0.

a.
$$r = \ln\left(7 + e^{-7s}\right) + C$$

b.
$$r = \ln(7) - \ln(6 + e^{-7s})$$

c.
$$r = e^{r-7s}$$

d.
$$r = \ln\left(\frac{8 + e^{-7s}}{7}\right)$$

$$e. \quad r = \left(1 + e^{-7s}\right)^7$$

ID: A

____ 21. Find an equation of the graph that passes through the point (7, 3) and has the slope $y' = \frac{5y}{2x}$.

- a. $y = 3(7x)^{\frac{2}{5}}$ b. $y = xe^{\frac{5}{2} + \frac{7}{3}}$
- $c. \quad y = 3\left(\frac{x}{7}\right)^{\frac{5}{2}}$
- d. $y = 7\left(\frac{5x}{2}\right)^3$
- e. $y = \frac{2}{5x} \ln(7x) + 3$

Ch 6 MC Practice Answer Section

MULTIPLE CHOICE

1.	ANS:			Section 6.1
•		Identify the solution of a differential equation	MSC:	
2.	ANS:			Section 6.1
		Identify the solution of a differential equation	MSC:	Skill
2		Section 6.1	DEE	0 6.1
3.	ANS:	5		Section 6.1
	MSC:	Identify the particular solution of a differential equation	1	
1	ANS:		DEE:	Section 6.1
4.		Identify the general solution of a differential equation	MSC:	
5		A PTS: 1 DIF: Easy		Section 6.1
3.		Identify the general solution of a differential equation	MSC:	
6	ANS:	•		Section 6.1
0.		Identify the general solution of a differential equation	MSC:	
7	ANS:	· · · · · · · · · · · · · · · · · · ·		Section 6.1
, .			MSC:	
8.	ANS:	, ,		Section 6.1
		Identify the general solution of a differential equation	MSC:	
9.	ANS:	· · · · · · · · · · · · · · · · · · ·		Section 6.1
	OBJ:	Identify the general solution of a differential equation	MSC:	
10.	ANS:	· · · · · · · · · · · · · · · · · · ·	REF:	Section 6.2
	OBJ:	Identify the general solution of a differential equation	MSC:	Skill
11.	ANS:	D PTS: 1 DIF: Medium	REF:	Section 6.2
	OBJ:	Identify the general solution of a differential equation	MSC:	Skill
12.	ANS:	B PTS: 1 DIF: Medium	REF:	Section 6.2
	OBJ:	Identify the general solution of a differential equation	MSC:	Skill
13.			REF:	Section 6.2
	OBJ:	*		Application
14.	ANS:	-		Section 6.2
	OBJ:	Identify a function given its derivative and a point that	it passe	s through
	MSC:			
15.	ANS:	5		
		Identify a function given its derivative and a point that	it passe	es through
	MSC:			
16.		D PTS: 1 DIF: Medium		Section 6.2
	OBJ:	Create and solve a differential equation model		Application
17.		B PTS: 1 DIF: Medium		Section 6.2
1.0	OBJ:	Create and solve a differential equation model	MSC:	
18.		B PTS: 1 DIF: Easy	REF:	Section 6.2
	OBJ:	Identify an exponential equation given its graph	MSC:	Skill

19. ANS: B PTS: 1 DIF: Medium REF: Section 6.3

OBJ: Calculate the general solution of the given differential equation

MSC: Application

20. ANS: B PTS: 1 DIF: Medium REF: Section 6.3

OBJ: Calculate the particular solution of the given differential equation with the given initial solution

MSC: Application

21. ANS: C PTS: 1 DIF: Medium REF: Section 6.3

OBJ: Calculate the equation of a graph with a given slope and passing through the given point

MSC: Application