Find:

1. $\int \sin (x) \cos ^{6}(x) d x$
2. $\int \tan (x) \sec ^{2}(x) d x$ Work this problem out in two different ways
3. $\int \sin (2 x) \cos (x) d x$

$$
\begin{aligned}
& \text { 3. } \int \sin (2 x) \cos (x) d x \\
& \text { 1. } \int \sin x \cos ^{6} x d x=-\int u^{6} d u=-\frac{u^{7}}{7}+C=-\frac{1}{7} \cos ^{7}(x)+C \\
& u=\cos x \\
& d u=-\sin x d x
\end{aligned}
$$

2. $\int \tan x \sec ^{2} x d x=\int u d u=\frac{1}{2} u^{2}+c=\frac{1}{2} \tan ^{2} x+C$

$$
u=\tan x
$$

$$
\begin{aligned}
& u=\tan x \\
& d u=\sec ^{2} x d x \\
& \int \tan x \sec ^{2} x d x=\int u d u=\frac{1}{2} u^{2}+C=\frac{1}{2} \sec ^{2} x+C \\
& u=\sec x
\end{aligned}
$$

$$
\begin{aligned}
& u=\tan x \\
& d u=\sec ^{2} x d x
\end{aligned}
$$

$$
\begin{aligned}
& u=\sec x \\
& d u=\tan x \sec x d x
\end{aligned}
$$

Equivalent answers!!!

$$
\left(\tan ^{2} x+1=\sec ^{2} x\right)
$$

3. $\int \sin (2 x) \cos (x) d x$

$$
\begin{aligned}
& \int_{u=\cos x d u=-\sin x d x} 2 \sin x \cos x \cdot \cos x d x \\
& \int^{2} 2 \sin x \cos ^{2} x d x=-2 \int u^{2} d u=-\frac{2}{3} u^{3}+c=-\frac{2}{3} \cos ^{3} x+C
\end{aligned}
$$

INTEGRALS INVOLVING POWERS OF SINE AND COSINE

We'll study techniques for evaluating integrals of the form

$$
\int \sin ^{m}(x) \cos ^{n}(x) d x \text { and } \int \sec ^{m}(x) \tan ^{n}(x) d x
$$

whether either m or n is a positive integer. The idea is to transform the integrand in a way that will allow you to use the same reasoning as in theO NOW.

Before we discuss the technique we need to remember the following Trig. Identities.

$$
\begin{array}{ll}
\sin ^{2}(x)+\cos ^{2}(x)=1 & \sin ^{2}(x)=\frac{1-\cos (2 x)}{2} \\
\cos ^{2}(x)=\frac{1+\cos (2 x)}{2}
\end{array}
$$

Guidelines for Evaluating Integrals of the form $\int \sin ^{m}(x) \cos ^{n}(x) d x$

1. If the power of the sine is odd and positive, save one sine factor and convert the remaining factors to cosines. Then expand and integrate.
2. If the power of the cosine is odd and positive, save one cosine factor and convert the remaining factors to sines. Then expand and integrate.

See Example \#2
3. If the power of both sine and cosine are even and nonnegative, make repeat use of the identities

$$
\sin ^{2}(x)=\frac{1-\cos (2 x)}{2} \text { and } \cos ^{2}(x)=\frac{1+\cos (2 x)}{2}
$$

$$
\begin{aligned}
& \text { Find } \int \sin ^{5}(x) \cos ^{4}(x) d x=\int \sin x \cdot \sin ^{4} x \cos ^{4} x d x= \\
& =\int \sin x\left(1-\cos ^{2} x\right)^{2} \cos ^{4} x d x=\int \sin x\left(1-2 \cos ^{2} x+\cos ^{4} x\right) \cos ^{4} x d x \\
& =\int \sin x\left(\cos ^{4} x-2 \cos ^{6} x+\cos ^{8} x\right) d x \\
& u=\cos x \\
& d u=-\sin x d x \\
& -\int u^{4}-2 u^{6}+u^{8} d u=-\frac{1}{5} u^{5}+\frac{2}{7} u^{7}-\frac{1}{9} u^{9}+C \\
& -\frac{1}{5} \cos ^{5} x+\frac{2}{7} \cos ^{7} x-\frac{1}{9} \cos ^{9} x+C
\end{aligned}
$$

$$
\begin{aligned}
& \text { Example \#2: } \\
& \text { Find } \int \frac{\cos ^{3}(x)}{\sqrt[3]{\sin (x)}} d x=\int \frac{\cos x \cdot \cos ^{2} x}{\sqrt[3]{\sin x}} d x=\int \frac{\cos x\left(1-\sin ^{2} x\right)}{(\sin x)^{1 / 3}} d x \\
& u=\sin x \\
& d u=\cos x d x \\
& \int \frac{1-u^{2}}{u^{1 / 3}} d u=\int u^{-1 / 3}-u^{5 / 3} d u=\frac{3}{2} u^{2 / 3}-\frac{3}{8} u^{8 / 3}+C \\
& \frac{3}{2} \sin ^{2 / 3} x-\frac{3}{8} \sin ^{8 / 3} x+C \\
& \frac{3}{2} \sqrt[3]{\sin ^{2} x}-\frac{3}{8} \sin ^{2} x \sqrt[3]{\sin ^{2} x}+C
\end{aligned}
$$

Example \#3:

$$
\begin{aligned}
& \text { Find } \int \cos ^{4}(x) \sin ^{2}(x) d x=d \\
& \cos ^{4} x \sin ^{2} x=\left(\frac{1+\cos (2 x)}{2}\right)^{2}\left(\frac{1-\cos (2 x)}{2}\right) \\
& \frac{\left(1+2 \cos (2 x)+\cos ^{2}(2 x)\right)(1-\cos (2 x))}{8} \\
& \frac{1+2 \cos (2 x)+\cos ^{2}(2 x)-\cos (2 x)-2 \cos ^{2}(2 x)-\cos ^{3}(2 x)}{8} \\
& \frac{1+\cos (2 x)-\cos ^{2}(2 x)-\cos ^{3}(2 x)}{8} \\
& \frac{1}{8}+\frac{1}{8} \cos (2 x)-\frac{1}{16}(1+\cos (4 x))-\frac{1}{8} \cos (2 x)\left(1-\sin ^{2}(2 x)\right) \\
& 2=\int \frac{1}{8} d x+\frac{1}{8} \int \cos ^{2}(2 x) d x-\frac{1}{16} \int 1+\cos (4 x) d x-\frac{1}{8} \int \cos (2 x)\left(1-\sin ^{2}(2 x)\right) \\
& =\frac{1}{8} x+\frac{1}{16} \sin (2 x)-\frac{1}{16} x-\frac{1}{64} \sin (4 x)-\frac{1}{8} \int \cos (2 x)\left(1-\sin ^{2}(2 x)\right) d x \\
& \frac{16}{8}=\sin (2 x) \\
& d u=2 \cos (2 x) d x \\
& -\frac{1}{16} \int 1-u^{2} d u=-\frac{1}{16} u+\frac{1}{48} u^{3}
\end{aligned}
$$

$$
\begin{aligned}
& =\frac{1}{8} x+\frac{1}{16} \sin (2 x)-\frac{1}{16} x-\frac{1}{64} \sin (4 x)-\frac{1}{16} \sin (2 x)+\frac{1}{48} \sin ^{3}(2 x)+C \\
& =\frac{1}{16} x-\frac{1}{64} \sin (4 x)+\frac{1}{48} \sin ^{3}(2 x)+C
\end{aligned}
$$

PLEASE refer to your textbook, pg. 537, to see the WALLIS'S FORMULAS.

INTEGRALS INVOLVING POWERS OF SECANT AND TANGENT

Guidelines for Evaluating Integrals of the form $\int \sec ^{m}(x) \tan ^{n}(x) d x$

1. If the power of the secant is even and positive, save a secant-squared factor and convert the remaining factors to tangents. Then expand and integrate.

See Example \#4
2. If the power of the tangent is odd and positive, save a secant-tangent factor and convert the remaining factors to secants. Then expand and integrate.

See Example \#5
3. If there no are secant factors and the power of the tangent is even and positive, convert a tangent-squared factor to a secant-squared factor. Then expand and integrate.

See Example \#6
4. If the integral is of the form $\int \sec ^{m}(x) d x$, where m is odd and positive, use Integration by Parts.

See Example \#7
5. If none of the first four guidelines applies, try converting to sines and cosines.

See Example \#8

$$
\begin{aligned}
& \text { Find } \int^{\int \sec ^{4}(2 x) \tan ^{3}(2 x) d x} \\
& \int \sec ^{4}(2 x) \tan ^{3}(2 x) d x=\int \sec ^{2}(2 x) \cdot \sec ^{2}(2 x) \tan ^{3}(2 x) d x \\
& \int \sec ^{2}(2 x)\left[1+\tan ^{2}(2 x)\right] \tan ^{3}(2 x) d x \\
& \int \sec ^{2}(2 x)\left[\tan ^{3}(2 x)+\tan ^{5}(2 x)\right] d x \\
& u= \tan (2 x) \\
& d u= \sec ^{2}(2 x) \cdot 2 d x=2 \sec ^{2}(2 x) d x \\
& \frac{1}{2} \operatorname{u}^{3}+u^{5} d u=\frac{1}{2}\left(\frac{u^{4}}{4}+\frac{u^{6}}{6}\right)+c=\frac{u^{4}}{8}+\frac{u^{6}}{12}+C \\
& \frac{1}{8} \tan ^{4}(2 x)+\frac{1}{12} \tan ^{6}(2 x)+c
\end{aligned}
$$

Example \#5:

$$
\begin{aligned}
& \text { Find } \int \frac{\tan ^{3}(3 x)}{\sqrt{\sec (3 x)}} d x=\int \tan ^{3}(3 x) \sec ^{1 / 2}(3 x) d x \\
& \int \tan (3 x) \sec (3 x)\left[\tan ^{2}(3 x) \sec ^{-1 / 2}(3 x)\right] d x \\
& \int \tan (3 x) \sec (3 x)\left[\left(\sec ^{2}(3 x)-1\right) \sec ^{-1 / 2}(3 x)\right] d x \\
& \int \tan (3 x) \sec (3 x)\left[\sec ^{3 / 2}(3 x)-\sec ^{-1 / 2}(3 x)\right] d x \\
& u=\sec (3 x) \\
& d u=\tan (3 x) \sec (3 x) \cdot 3 d x \\
& \frac{1}{3} \int u^{3 / 2}-u^{-1 / 2} d u=\frac{1}{3}\left(\frac{2}{5} u^{5 / 2}-2 u^{1 / 2}\right)+C \\
& \frac{2}{15} \sec ^{5 / 2}(3 x)-\frac{2}{3} \sec { }^{1 / 2}(3 x)+C \\
& \frac{2}{15} \sec ^{2}(3 x) \sqrt{\sec (3 x)}-\frac{2}{3} \sqrt{\sec (3 x)}+c
\end{aligned}
$$

$$
\begin{aligned}
& \text { Example \#6: } \\
& \text { Find } \int \tan ^{4}(2 x+1) d x=\int \tan ^{2}(2 x+1) \tan ^{2}(2 x+1) d x \\
& \int \tan ^{2}(2 x+1)\left[\sec ^{2}(2 x+1)-1\right] d x \\
& \int \tan ^{2}(2 x+1) \sec ^{2}(2 x+1) d x-\int \tan ^{2}(2 x+1) d x \\
& \int \tan ^{2}(2 x+1) \sec ^{2}(2 x+1) d x-\int \sec ^{2}(2 x+1)-1 d x \\
& \int \tan ^{2}(2 x+1) \sec ^{2}(2 x+1) d x-\int \sec ^{2}(2 x+1) d x+\int d x \\
& u=\tan ^{(2 x+1)} \\
& d u=2 \sec ^{2}(2 x+1) \\
& \frac{1}{2} \int u^{2} d u=\frac{1}{6} u^{3}+c \\
& \frac{1}{6} \tan ^{3}(2 x+1)-\frac{1}{2} \tan (2 x+1)+x+c
\end{aligned}
$$

Example \#7:

$$
\begin{aligned}
& \text { Find } \int \sec ^{3}(x) d x=\int \sec x \cdot \sec ^{2} x d x \\
& u=\sec x \quad d v=\sec ^{2} x d x \\
& d u=\sec x \tan x d x \quad v=\tan x \\
& \sec x \tan x-\int \sec x \tan ^{2} x d x \\
& \int \sec ^{3} x d x=\sec x \tan x-\int \sec x\left(\sec ^{2} x-1\right) d x \\
& \int \sec ^{3} x d x=\sec x \tan x-\int \sec ^{3} x+\int \sec x d x \\
& 2 \int \sec ^{3} x d x=\sec x \tan x+\int \sec x d x \\
& \int \sec x d x=\int \sec x \frac{\sec x+\tan x}{\sec x+\tan x} d x \\
& =\int \frac{\sec { }^{2} x+\sec x \tan x}{\tan x+\sec x} d x=\int \frac{1}{u} d u \\
& u=\tan x+\sec x \\
& d u=(\sec x+\sec x \tan x) d x \\
& \int \sec ^{3} x d x=\frac{1}{2} \sec x+\tan x+\frac{1}{2} \ln |\tan x+\sec x|+c
\end{aligned}
$$

AP CALCULUS BC
Example \#8:
Find $\int \frac{\sec (x)}{\tan ^{2}(x)} d x$

Section 8.3: TRIGONOMETRIC INTEGRALS, pg. 534

$$
\frac{\frac{1}{\cos x}}{\frac{\sin ^{2} x}{\cos ^{2} x}}=\frac{1}{\cos x} \cdot \frac{\cos ^{2} x}{\sin ^{2} x}=\frac{\cos x}{\sin ^{2} x}
$$

$$
\begin{aligned}
& \int \frac{\cos x}{\sin ^{2} x} d x=\int u^{-2} d u=-u^{-1}+C \\
&=\frac{-1}{u}+C \\
&=-\frac{1}{\sin x}+C=-\sin x \\
& d u=\cos x d x
\end{aligned}
$$

INTEGRALS INVOLVING SINE - COSINE PRODUCTS WITH DIFFERENT ANGLES

$$
\begin{aligned}
& \text { REMINDER OF Product to Sum Identities } \\
& \sin (m x) \sin (n x)=\frac{1}{2}(\cos [(m-n) x]-\cos [(m+n) x]) \\
& \sin (m x) \cos (n x)=\frac{1}{2}(\sin [(m-n) x]+\sin [(m+n) x]) \\
& \cos (m x) \cos (n x)=\frac{1}{2}(\cos [(m-n) x]+\cos [(m+n) x])
\end{aligned}
$$

Example \#9:

$$
\sin (8 x) \cos (3 x)=
$$

$$
\begin{aligned}
& \text { Example } \# 9: \\
& \text { Find } \int \sin (8 x) \cos (3 x) d x \quad=\frac{1}{2}(\sin (5 x)+\sin (11 x))
\end{aligned}
$$

$$
\frac{1}{2} \int \sin (5 x) d x+\frac{1}{2} \int \sin (11 x) d x
$$

$$
-\frac{1}{10} \cos (5 x)-\frac{1}{22} \cos (11 x)+c
$$

