Volume of Solids of Known cross-sections and Volumes of Revolutions
Disk Volume

$$
\text { Disk Volume }=\pi \int_{a}^{b}[R(x)]^{2} d x \text { or } \pi \int_{c}^{d}[R(y)]^{2} d y
$$

Cone Example
Washer Volume

$$
\text { Washer Volume }=\pi \int_{a}^{b}[R(x)]^{2}-\left[r(x)^{2}\right] d x \text { or } \pi \int_{c}^{d}[R(y)]^{2}-\left[r(y)^{2}\right] d y
$$

Volume of Solids with a Known Cross Section

$$
\text { Volume of Solids with a Known Cross Sections }=\int_{a}^{b} A(x) d x \text { or } \int_{c}^{d} A(y) d y
$$

Where the most common cross sections are:

Square	Rectangle	Semicircle	Triangle	Equilateral \triangle	Iso.Rt. \triangle
$A=x^{2}$	$A=b h$	$A=\frac{1}{2} \pi r^{2}$	$A=\frac{\sqrt{2} b h}{2}$	$A=\frac{\sqrt{3}}{4} s^{2}$	$A=\frac{(l e g)^{2}}{2}$ leg in region $A=\frac{(h y p)^{2}}{4}$ hyp in region

1. To see an interactive 3-D rendering, go to https://www.geogebra.org/m/XFgMaKTy
(a) Find the volume of the solid whose base is the enclosed area between $y=\sqrt{x}$ and $y=x^{2}$, whose cross section $\left(\perp\right.$ to the x-axis) is a square $\left(A=s^{2}\right)$
(b) Find the volume of the solid whose base is the enclosed area between $y=\sqrt{x}$ and $y=x^{2}$, whose cross section (\perp to the x-axis) is a Equilateral Triangle $\left(A=\frac{\sqrt{3}}{4} s^{2}\right)$
(c) Find the volume of the solid whose base is the enclosed area between $y=\sqrt{x}$ and $y=x^{2}$, whose cross section $\left(\perp\right.$ to the x-axis) is a Semi-circle $\left(A=\frac{1}{2} \pi r^{2}\right)$
2. Class 3-18 Examples from DeltaMath
(a) Let the region R be the area enclosed by the function $f(x)=x^{2}$ and $g(x)=3 x$. If the region R is the base of a solid such that each cross section perpendicular to the x-axis is an isosceles right triangle with a leg in the region R, find the volume of the solid. You may use a calculator and round to the nearest thousandth.
(b) Let the region R be the area enclosed by the function $f(x)=e^{x}-2$ and $g(x)=4 x-1$. If the region R is the base of a solid such that each cross section perpendicular to the x-axis is a square, find the volume of the solid. You may use a calculator and round to the nearest thousandth.
(c) Let the region R be the area enclosed by the function $f(x)=\sqrt{x}-1$ and $g(x)=\frac{1}{3} x-1$. If the region R is the base of a solid such that each cross section perpendicular to the x-axis is a rectangle whose height is half the length of its base in the region R, find the volume of the solid. You may use a calculator and round to the nearest thousandth.
(d) Let the region R be the area enclosed by the function $f(x)=\ln (2 x)$ and $g(x)=\frac{1}{2} x-1$. If the region R is the base of a solid such that each cross section perpendicular to the x-axis is a semi-circle with diameters extending through the region R, find the volume of the solid. You may use a calculator and round to the nearest thousandth.
