7.2b Notes and Examples

Volume of Solids of Known cross-sections and Volumes of Revolutions

Disk Volume

Disk Volume=
$$\pi \int_{a}^{b} [R(x)]^{2} dx$$
 or $\pi \int_{c}^{d} [R(y)]^{2} dy$

Cone Example

Washer Volume

Washer Volume=
$$\pi \int_{a}^{b} [R(x)]^{2} - [r(x)^{2}] dx$$
 or $\pi \int_{c}^{d} [R(y)]^{2} - [r(y)^{2}] dy$

Volume of Solids with a Known Cross Section

Volume of Solids with a Known Cross Sections =
$$\int_{a}^{b} A(x) dx$$
 or $\int_{c}^{d} A(y) dy$

Where the most common cross sections are:

Square	Rectangle	Semicircle	Triangle	Equilateral \triangle	Iso.Rt. \triangle
$A = x^2$	A = bh	$A = \frac{1}{2}\pi r^2$	$A = \frac{1}{2}bh$	$A = \frac{\sqrt{3}}{4}s^2$	$A = \frac{(leg)^2}{2} \text{ leg in region}$ $A = \frac{(hyp)^2}{4} \text{ hyp in region}$

- 1. To see an interactive 3-D rendering, go to https://www.geogebra.org/m/XFgMaKTy
 - (a) Find the volume of the solid whose base is the enclosed area between $y = \sqrt{x}$ and $y = x^2$, whose cross section (\perp to the x-axis) is a square ($A = s^2$)

(b) Find the volume of the solid whose base is the enclosed area between $y = \sqrt{x}$ and $y = x^2$, whose cross section (\perp to the *x*-axis) is a Equilateral Triangle $\left(A = \frac{\sqrt{3}}{4}s^2\right)$

(c) Find the volume of the solid whose base is the enclosed area between $y = \sqrt{x}$ and $y = x^2$, whose cross section (\perp to the *x*-axis) is a Semi-circle $\left(A = \frac{1}{2}\pi r^2\right)$

- 2. Class 3-18 Examples from DeltaMath
 - (a) Let the region R be the area enclosed by the function $f(x) = x^2$ and g(x) = 3x. If the region R is the base of a solid such that each cross section perpendicular to the x-axis is an **isosceles right triangle** with a leg in the region R, find the volume of the solid. You may use a calculator and round to the nearest thousandth.

(b) Let the region R be the area enclosed by the function $f(x) = e^x - 2$ and g(x) = 4x - 1. If the region R is the base of a solid such that each cross section perpendicular to the x-axis is a square, find the volume of the solid. You may use a calculator and round to the nearest thousandth.

(c) Let the region R be the area enclosed by the function $f(x) = \sqrt{x} - 1$ and $g(x) = \frac{1}{3}x - 1$. If the region R is the base of a solid such that each cross section perpendicular to the x-axis is a **rectangle** whose height is half the length of its base in the region R, find the volume of the solid. You may use a calculator and round to the nearest thousandth.

(d) Let the region R be the area enclosed by the function $f(x) = \ln(2x)$ and $g(x) = \frac{1}{2}x - 1$. If the region R is the base of a solid such that each cross section perpendicular to the x-axis is a **semi-circle** with <u>diameters</u> extending through the region R, find the volume of the solid. You may use a calculator and round to the nearest thousandth.