Text in Blue Boxes indicate a clickable link

that will open a web page or video if you are connected to internet, like the one below:
Watch this 9 minute video as you complete these notes. (clicking on the boxed words "9 minute video" on a computer or iPad connected to the internet should take you to to the video)

Revolving a region around a line forms a solid whose cross-section is a circle.

So the Volume is computed based upon πr^{2}, the area of a circle:
Disk Volume

$$
\text { Disk Volume }=\pi \int_{a}^{b}[R(x)]^{2} d x \text { or } \pi \int_{c}^{d}[R(y)]^{2} d y
$$

Washer Volume

$$
\text { Washer Volume }=\pi \int_{a}^{b}[R(x)]^{2}-\left[r(x)^{2}\right] d x \text { or } \pi \int_{c}^{d}[R(y)]^{2}-\left[r(y)^{2}\right] d y
$$

1. Intro slides (Chapter 7 Videos at Mathorama Podcast)
(a) Find the volume of the solid formed by revolving the region bounded by the x-axis, $y=\sqrt{x}$, and $x=4$ around the the line $y=0$ (the x-axis) [Minute 1:58 in the video]
(b) Find the volume of the solid formed by revolving the region bounded by the graphs of $f(x)=2-x^{2}$ and $g(x)=1$ about the line $y=1$ [Minute 5:05 in the video
(c) Find the volume of the solid formed by revolving the region bounded by the y-axis, $y=\sqrt{x}$ and $y=2$ about the line $x=0$ (the y-axis) [Minute 6:35 in the video]
2. The next 3 minute video that accompanies the Delta Math Class 3-17 Examples (7.2a) at https: //deltamath.com explains part (b). First give part (a) a try on your own.
(a) Match the shaded region to the solid formed by revolving it around a line (There are six). How many did you get right?
(b) Let the region R be the area enclosed by the function $f(x)=e^{x}$, the x-axis and the vertical lines $x=0$ and $x=2$. Find the volume of the solid generated when the region R is revolved about the x-axis. You may use a calculator and round to the nearest thousandth.
(c) Let the region R be the area enclosed the function $f(x)=\sqrt{x}$, the horizontal line $y=1$, and the y-axis. Find the volume of the solid generated when the region R is revolved about the line $y=1$. You may use a calculator and round to the nearest thousandth.
(d) Let the region R be the area enclosed the function $f(x)=e^{x}$, and $g(x)=4 x+1$. Find the volume of the solid generated when the region R is revolved about the $x=$ axis. You may use a calculator and round to the nearest thousandth. Watch Video here
(e) Let the region R be the area enclosed the function $f(x)=\sqrt{2 x}$, the horizontal line $y=2$, and the y-axis. Find the volume of the solid generated when the region R is revolved about the line $y=5$. You may use a calculator and round to the nearest thousandth.
(f) Find the volume of the solid obtained by rotating the region bounded by $x=2-y^{2}$ and $x=-y$ about the line $x=7$. Round to the nearest thousandth.
