Area of a Region Between Two Curves

1. (a) Finally in our last chapter, we extend \qquad integrals from the area \qquad
a curve to the area \qquad two or more curves.
(b) Sometimes we want \qquad slices, and sometimes \qquad , and sometimes either approach will work.
(c) We often will need to find points of \qquad for the upper and lower bounds of our integral, and sometimes we have to divide the area in \qquad and add together two or more integrals to find the \qquad .
2. Find the area between $y=6-x^{2}$ and $y=x^{2}-2 x+2$
3. Find the area between $x=y^{2}-6 y$ and $x=3 y-y^{2}$
4. Find the area between $y=3-x^{2}$ and $y=1-x$
5. Find the area between $x=5-y^{2}$ and $x=y-1$
6. This could be solved a couple of ways: a single integral with horizontal slices, or the sum of two pieces using vertical slices: Find the area between $y=\ln x$ and $y=5-x$. (Calculator Active)
7. Find the area between $y=\sqrt{x}$ and $y=6-x$. (Calculator NOT Active)
8. Here is region Where top and bottom switch: Find the area between $f(x)=1+x+e^{x^{2}-2 x}$ and $g(x)=x^{4}-6.5 x^{2}+6 x+2$. (Calculator Active)
9. Here is region defined by 3 curves: Find the area between $y=2^{x}, y=\frac{1}{x}$ and $y=4^{x}$. (Calculator Active)
