Solving Differential Equations

1. Warm Up (from $\Delta \mathrm{Math}$): Consider the differential equation $\frac{d y}{d x}=x(3+2 y)$ with a particular solution $y=f(x)$ having an initial condition $y(-4)=-2$ Use the equation of the line tangent to the graph of f at the point $(-4,-2)$ in order to approximate the value of $f(-4.1)$.
2. (a) A differential equation is an equation involving a \qquad
(b) So far you have solved differentiable equations of the form \qquad and \qquad
(c) In this section we lear to handle a more general type, where $\frac{d y}{d x}$ is a relation between \qquad and \qquad .
(d) Last section we used \qquad to find general and particular solutions graphically.
but in this sections we will use an analytic strategy called called \qquad
3. How to find a general and particular solutions to a differential equation analytically:
(a) Collect terms: \qquad
(b) \qquad both sides, but only one \qquad on one side is needed.
(c) For the general solution, solve for \qquad
(d) For a particular solution that passes through a particular point, substitute the \qquad into the general solution, and solve for \qquad . Don't forget to write your final solution in terms of \qquad
4. Find the general solution of the differential equation $y^{\prime}=\frac{2 x}{y}$
5. Find the general solution of the differential equation $y^{\prime}=-\frac{\sqrt{x}}{3 y}$
6. Find the general solution of the differential equation $x y+y^{\prime}=16 x$
7. Find the function $f(t)$ passing through the point $(0,10)$ and has the derivative $\frac{d y}{d t}=\frac{t^{2}}{y}$ (When your have your equation check with your TI or Desmos/https://www.desmos.com/calculator/p7vd3cdmei)
8. In many applications, the rate of change of a variable y is proportional to the value of y, and a constant (usually k or r). In algebra and science classes we are just told to memorize a formula. Now we can derive it! If the rate of change of y is proportional, then we can start with $\frac{d y}{d t}=k y$ or $\frac{d y}{d t}=r y$. Now we can solve this differential equation to find a familiar formula:
9. The rate of decay of radium is proportional to the amount present at any time. If 60 mg of radium are present now and its half-life is is 1690 years, how much radium will be present 100 years from now?
(a) Think of three data points of a function $r(t)$ that maps year to mg of radium:
(b) It's proportial, so we use $\frac{d r}{d t}=k r$, solve for r .
(c) Next solve for C using one of the data points
(d) Next solve for k using the other data point
(e) Finally we find $r(100)$
