6.2 Notes and Examples

Name:

Solving Differential Equations

1. Warm Up (from Δ Math): Consider the differential equation $\frac{dy}{dx} = x(3+2y)$ with a particular solution y = f(x) having an initial condition y(-4) = -2 Use the equation of the line tangent to the graph of f at the point (-4, -2) in order to approximate the value of f(-4.1).

2. (a) A differential equation is an equation involving a
(b) So far you have solved differentiable equations of the form and
(c) In this section we lear to handle a more general type, where $\frac{dy}{dx}$ is a relation between and
(d) Last section we used to find general and particular solutions graphically.
but in this sections we will use an analytic strategy called called
3. How to find a general and particular solutions to a differential equation analytically:
(a) Collect terms:
(b) both sides, but only one on one side is needed.
(c) For the general solution, solve for
(d) For a particular solution that passes through a particular point , substitute the into
the general solution, and solve for Don't forget to write your final solution in terms of
4. Find the general solution of the differential equation $y' = \frac{2x}{y}$

5. Find the general solution of the differential equation $y' = -\frac{\sqrt{x}}{3y}$

6. Find the general solution of the differential equation xy + y' = 16x

7. Find the function f(t) passing through the point (0, 10) and has the derivative $\frac{dy}{dt} = \frac{t^2}{y}$ (When your have your equation check with your TI or Desmos https://www.desmos.com/calculator/p7vd3cdmei)

8. In many applications, the rate of change of a variable y is proportional to the value of y, and a constant (usually k or r). In algebra and science classes we are just told to memorize a formula. Now we can derive it! If the rate of change of y is proportional, then we can start with $\frac{dy}{dt} = ky$ or $\frac{dy}{dt} = ry$. Now we can solve this differential equation to find a familiar formula:

- 9. The rate of decay of radium is proportional to the amount present at any time. If 60 mg of radium are present now and its half-life is is 1690 years, how much radium will be present 100 years from now?
 - (a) Think of three data points of a function r(t) that maps year to mg of radium:
 - (b) It's proportial, so we use $\frac{dr}{dt} = kr$, solve for r.

- (c) Next solve for C using one of the data points
- (d) Next solve for k using the other data point
- (e) Finally we find r(100)