Intro to Euler's Method (6.1b)

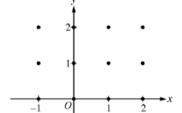
- 1. (2013 BC 5) Consider the differential equation $\frac{dy}{dx} = y^2(2x+2)$. Let y = f(x) be the particular solution to the differential equation with initial condition f(0) = -1
 - (a) Find $\lim_{x\to 0} \frac{f(x)+1}{\sin x}$

(b) Use Euler's method, starting at x=0 with two steps of equal size, to approximate $f\left(\frac{1}{2}\right)$.

Page 2 of 4 August 19, 2022

(c) Find y = f(x), the particular solution to the differential equation with initial condition f(0) = 1.

Page 3 of 4 August 19, 2022


2. Let y = f(x) be the solutions to the differential equation $\frac{dy}{dx} = 2y - x$ with the initial condition f(1) = 2. What is the approximation for f(0) obtained using Euler's method with two steps of equal length starting at x = 1?

- (a) $-\frac{5}{4}$
- (b) -1
- (c) $\frac{1}{4}$ (d) $\frac{1}{2}$
- (e) $\frac{27}{4}$

3. Let y = f(x) be the solutions to the differential equation $\frac{dy}{dx} = x - y - 1$ with the initial condition f(1) = -2. What is the approximation for f(1.4) if Euler's method is used, starting at x = 1 with two steps of equal size?

- (a) -2
- (b) -1.24
- (c) -1.2
- (d) -0.64
- (e) 0.2

4. (2005 BC 4) Consider the differential equation $\frac{dy}{dx} = 2x - y$.

- (a) On the axes provided, sketch a slope field for the given differential at the twelve points indicated, and sketch the solution curve that passes through the point (0,1).
- (b) The solution curve that passes through the point (0,1) has a local minimum at $x = \ln(3/2)$. What is the y-value of this local minimum?
- (c) Let y = f(x) be the particular solution to the given differential equation with the initial condition f(0) = 1. Use Euler's method, starting at x = 0 with two steps of equal size, to approximate f(-0.4). Show the work that leads to your answer.
- (d) Find $\frac{d^2y}{dx^2}$ in terms of x and y. Determine whether the approximation found in part (c) is less than or greater than f(-0.4). Explain your reasoning.