Intro to Euler's Method (6.1b)

1. (2013 BC 5) Consider the differential equation $\frac{d y}{d x}=y^{2}(2 x+2)$. Let $y=f(x)$ be the particular solution to the differential equation with initial condition $f(0)=-1$
(a) Find $\lim _{x \rightarrow 0} \frac{f(x)+1}{\sin x}$
(b) Use Euler's method, starting at $x=0$ with two steps of equal size, to approximate $f\left(\frac{1}{2}\right)$.
(c) Find $y=f(x)$, the particular solution to the differential equation with initial condition $f(0)=1$.
2. Let $y=f(x)$ be the solutions to the differential equation $\frac{d y}{d x}=2 y-x$ with the initial condition $f(1)=2$. What is the approximation for $f(0)$ obtained using Euler's method with two steps of equal length starting at $x=1$?
(a) $-\frac{5}{4}$
(b) -1
(c) $\frac{1}{4}$
(d) $\frac{1}{2}$
(e) $\frac{27}{4}$
3. Let $y=f(x)$ be the solutions to the differential equation $\frac{d y}{d x}=x-y-1$ with the initial condition $f(1)=-2$. What is the approximation for $f(1.4)$ if Euler's method is used, starting at $x=1$ with two steps of equal size?
(a) -2
(b) -1.24
(c) -1.2
(d) -0.64
(e) 0.2
4. (2005 BC 4) Consider the differential equation $\frac{d y}{d x}=2 x-y$.
(a) On the axes provided, sketch a slope field for the given differential at the twelve points indicated, and sketch the solution curve that passes through the point $(0,1)$.
(b) The solution curve that passes through the point $(0,1)$ has a local minimum at $x=\ln (3 / 2)$. What is the y-value of this local minimum?

(c) Let $y=f(x)$ be the particular solution to the given differential equation with the initial condition $f(0)=1$. Use Euler's method, starting at $x=0$ with two steps of equal size, to approximate $f(-0.4)$. Show the work that leads to your answer.
(d) Find $\frac{d^{2} y}{d x^{2}}$ in terms of x and y. Determine whether the approximation found in part (c) is less than or greater than $f(-0.4)$. Explain your reasoning.
