Slope Fields and Graphical Solutions to Differential Equations

1. (a) Finding an equation from its derivative is called "Solving a \qquad
which informally we call a " \qquad
(b) Later this chapter we will use \qquad methods, but sometimes this approach,though precise, proves to be difficult or impossible.
(c) In this section we will find a solution using graphical methods. Since we have an equation for the slope at any point, We draw short line segments with the correct \qquad at various points.
(d) Once we have a few of these, we call it a \qquad or a
2. Here are some slope fields. What kind of equations do they look like to you?

3. Compute the slope at various points to sketch a slope field.
(a) $\frac{d y}{d x}=x-1$

(b) $\frac{d y}{d x}=\frac{1}{2} y$

(c) $\frac{d y}{d x}=\frac{x}{y}$

4. Match the "diffEQ" with its slope field
(a) $\frac{d y}{d x}=2 y$
(b) $\frac{d y}{d x}=2 x$
(c) $\frac{d y}{d x}=x+1$
(d) $\frac{d y}{d x}=y-1$
(e) $\frac{d y}{d x}=x+y$
(f) $\frac{d y}{d x}=-\frac{x}{y}$

c.

E.

B

D.

F.

5. Sketch a solution of the differential equation whose slope field is shown above that passes through the point $(-1,1)$
6. Sketch a solution of the differential equation whose slope field is shown above that passes through the point (3,3)
7. Sketch a solution of the differential equation whose slope field is shown above that passes through the point $(-1,-1)$
8. Show $y=4 e^{-6 x^{2}}$ is a solution to the differential equation $\frac{d y}{d x}=-12 x y$ that goes through $(0,4)$
9. Delta Math Practice Slope fields https://www.deltamath.com/
10. 6.1 WS: Slope Fields https://www.mathorama.com/gsp/Chapter\ 6.1\ WS.pdf
11. Make your own Slope Field and find a particular solution with GeoGebra: https://www.geogebra.org/m/Pd4Hn4BR
12. Check your solutions at Desmos: https://www.desmos.com/calculator/tmi3vk4r84

