5.7 Notes and Examples

Name:

Inverse Trig Derivatives: Derivatives

- 1. Warm up: Trig Drill. The sine function takes an angle, and returns a ratio. The arcsine function takes
 - a _____, and returns an _____
 - (a) If $\sin \frac{\pi}{6} = \frac{1}{2}$, then $\arcsin \frac{1}{2} =$
 - (b) If $\sin -\frac{\pi}{6} = -\frac{1}{2}$, then $\arcsin -\frac{1}{2} =$
 - (c) If $\sin \frac{5\pi}{6} = \frac{1}{2}$, then $\arcsin \frac{1}{2} =$
 - (d) If $\sin \frac{11\pi}{6} = -\frac{1}{2}$, then $\arcsin -\frac{1}{2} =$
 - (e) Try practicing here: https://www.mathorama.com/trigdrill/ (Press the red Start button to begin)

- 2. Review of $\arcsin x, \sin^{-1} x$, $\operatorname{arccosine} (\operatorname{arccos} x, \cos^{-1} x)$, and $\operatorname{arctangent} (\operatorname{arctan} x, \tan^{-1} x)$ (a) In order to have inverse functions of periodic trig functions, we restrict the range.
 - (b) Arcsine and Arctangent: If the ratio is _____, the angle returned is

between _____ and _____ (Quadrant ____)

(c) Arcsine and Arctangent: If the ratio is _____, the angle returned is

between _____ and _____ (Quadrant ____)

- (d) Arccosine: If the ratio is _____, the angle returned is
 - between ______ and _____ (Quadrant ____)
- (e) Arccosine: If the ratio is _____, the angle returned is

between _____ and _____ (Quadrant ___)

(f) Graph $y = \arcsin x$ and the restricted $y = \sin x \{-\frac{\pi}{2} \le x \le \frac{\pi}{2}\}$ using your TI-84 or https://www.desmos.com/calculator/sxjpz2cb63

(g) Graph $y = \arctan x$ and the restricted $y = \tan x \{-\frac{\pi}{2} \le x \le \frac{\pi}{2}\}$ using your TI-84 or https://www.desmos.com/calculator/sxjpz2cb63

				π				
				3π/4				
				π/2				
				π/4				
-m	-311/4	-17/2	-n ¹⁴	0	πί4	n/2	311/4	ñ
				-m/4				
				-11/2				

(h) Graph $y = \arccos x$ and the restricted $y = \cos x \{ 0 \le x \le \pi \}$ using your TI-84 or https://www.desmos.com/calculator/sxjpz2cb63

- (j) The domain of $\arccos x$ is _____
- (k) The domain of $\arctan x$ is _____

3. Deriving the Derivative of $y = \arcsin x$

- (a) Draw a right triangle with hypotenuse 1, acute angle y and opposite leg with length x.
- (b) Use the Pythagorean Theorem to find the length of the adjacent leg.
- (c) Start with $y = \arcsin x$ (note how this true from our drawing)
- (d) Take the sine of both sides (note how this can also be verified from the drawing SOH-CAH-TOA)
- (e) Implicitly differentiate both sides with respect to x (Remember the chain rule)
- (f) Divide both sides by $\cos y$
- (g) Substitute $\cos y$ with "adjacent over hypotenuse" from the drawing.
- (h) QED!

x

4. Deriving the Derivative of $y = \arctan x$

- (a) Draw a right triangle with adjacent leg 1, acute angle y and opposite leg with length x.
- (b) Use the Pythagorean Theorem to find the length of the hyptenuse.
- (c) Start with $y = \arctan x$ (note how this true in our drawing)
- (d) Take the tangent of both sides (note how this can also be verified from the drawing using SOH-CAH-TOA)
- (e) Implicitly differentiate both sides with respect to x (Remember the chain rule)
- (f) Substitute $\sec^2 y$ with "hypotenuse over adjacent squared" from the drawing.
- (g) Solve for $\frac{dy}{dx}$
- (h) QED!

Try deriving $y = \arccos x$ on your own, or if you need help: https://www.mathorama.com/gsp/Arccosine.pdf

The Theorems $\frac{d}{dx} [\arcsin x] = \frac{1}{\sqrt{1 - x^2}} \qquad \int \frac{1}{\sqrt{1 - x^2}} \, dx =$ If u is differentiable function of x: $\frac{d}{dx} [\arcsin u] = \frac{u'}{\sqrt{1 - u^2}} \qquad \int \frac{u'}{\sqrt{1 - u^2}} \, dx =$ $\frac{d}{dx} [\arctan x] = \frac{1}{1 + x^2} \qquad \int \frac{1}{1 + x^2} \, dx =$ If u is differentiable function of x: $\frac{d}{dx} [\arctan u] = \frac{u'}{1 + u^2} \qquad \int \frac{u'}{1 + u^2} \, dx =$

1. Examples

(a) If $f(x) = \arcsin(2x)$, find f'(x)

(b) If
$$f(x) = \arctan(3x)$$
, find $f'(x)$

(c) If $f(x) = \arcsin \sqrt{x}$, find f'(x)

(d) If $f(x) = \arcsin x + x\sqrt{1-x^2}$, find f'(x)