Inverse Trig Derivatives: Derivatives

1. Warm up: Trig Drill. The sine function takes an angle, and returns a ratio. The arcsine function takes
a \qquad , and returns an \qquad
(a) If $\sin \frac{\pi}{6}=\frac{1}{2}$, then $\arcsin \frac{1}{2}=$
(b) If $\sin -\frac{\pi}{6}=-\frac{1}{2}$, then $\arcsin -\frac{1}{2}=$
(c) If $\sin \frac{5 \pi}{6}=\frac{1}{2}$, then $\arcsin \frac{1}{2}=$
(d) If $\sin \frac{11 \pi}{6}=-\frac{1}{2}$, then $\arcsin -\frac{1}{2}=$
(e) Try practicing here: https://www.mathorama.com/trigdrill/ (Press the red Start button to begin)
2. Review of $\operatorname{arcsine}\left(\arcsin x, \sin ^{-1} x\right)$, $\operatorname{arccosine}\left(\arccos x, \cos ^{-1} x\right)$, and $\operatorname{arctangent}\left(\arctan x, \tan ^{-1} x\right)$
(a) In order to have inverse functions of periodic trig functions, we restrict the range.
(b) Arcsine and Arctangent: If the ratio is \qquad , the angle returned is
between \qquad and \qquad (Quadrant \qquad _)
(c) Arcsine and Arctangent: If the ratio is \qquad , the angle returned is between \qquad and \qquad (Quadrant \qquad _)
(d) Arccosine: If the ratio is \qquad , the angle returned is between \qquad and \qquad (Quadrant \qquad _)
(e) Arccosine: If the ratio is \qquad , the angle returned is between \qquad and \qquad (Quadrant \qquad _)
(f) Graph $y=\arcsin x$ and the restricted $y=\sin x\left\{-\frac{\pi}{2} \leq x \leq \frac{\pi}{2}\right\}$
using your TI-84 or https://www.desmos.com/calculator/sxjpz2cb63

(g) Graph $y=\arctan x$ and the restricted $y=\tan x\left\{-\frac{\pi}{2} \leq x \leq \frac{\pi}{2}\right\}$
using your TI-84 or https://www.desmos.com/calculator/sxjpz2cb63

(h) Graph $y=\arccos x$ and the restricted $y=\cos x\{0 \leq x \leq \pi\}$ using your TI-84 or https://www.desmos.com/calculator/sxjpz2cb63

(i) The domain of $\arcsin x$ is \qquad
(j) The domain of $\arccos x$ is \qquad
(k) The domain of $\arctan x$ is \qquad
3. Deriving the Derivative of $y=\arcsin x$
(a) Draw a right triangle with hypotenuse 1, acute angle y and opposite leg with length x.
(b) Use the Pythagorean Theorem to find the length of the adjacent leg.
(c) Start with $y=\arcsin x$ (note how this true from our drawing)
(d) Take the sine of both sides (note how this can also be verified from the drawing SOH-CAH-TOA)
(e) Implicitly differentiate both sides with respect to x (Remember the chain rule)
(f) Divide both sides by $\cos y$
(g) Substitute $\cos y$ with "adjacent over hypotenuse" from the drawing.
(h) QED!

4. Deriving the Derivative of $y=\arctan x$
(a) Draw a right triangle with adjacent leg 1 , acute angle y and opposite leg with length x.
(b) Use the Pythagorean Theorem to find the length of the hyptenuse.
(c) Start with $y=\arctan x$ (note how this true in our drawing)
(d) Take the tangent of both sides (note how this can also be verified from the drawing using SOH-CAH-TOA)
(e) Implicitly differentiate both sides with respect to x (Remember the chain rule)
(f) Substitute $\sec ^{2} y$ with "hypotenuse over adjacent squared" from the drawing.
(g) Solve for $\frac{d y}{d x}$
(h) QED!

Try deriving $y=\arccos x$ on your own, or if you need help: https://www.mathorama.com/gsp/Arccosine.pdf

The Theorems

$$
\frac{d}{d x}[\arcsin x]=\frac{1}{\sqrt{1-x^{2}}} \quad \int \frac{1}{\sqrt{1-x^{2}}} d x=
$$

If u is differentiable function of x :

$$
\begin{array}{ll}
\frac{d}{d x}[\arcsin u]=\frac{u^{\prime}}{\sqrt{1-u^{2}}} & \int \frac{u^{\prime}}{\sqrt{1-u^{2}}} d x= \\
\frac{d}{d x}[\arctan x]=\frac{1}{1+x^{2}} & \int \frac{1}{1+x^{2}} d x=
\end{array}
$$

If u is differentiable function of x :

$$
\frac{d}{d x}[\arctan u]=\frac{u^{\prime}}{1+u^{2}}
$$

$$
\int \frac{u^{\prime}}{1+u^{2}} d x=
$$

1. Examples
(a) If $f(x)=\arcsin (2 x)$, find $f^{\prime}(x)$
(b) If $f(x)=\arctan (3 x)$, find $f^{\prime}(x)$
(c) If $f(x)=\arcsin \sqrt{x}$, find $f^{\prime}(x)$
(d) If $f(x)=\arcsin x+x \sqrt{1-x^{2}}$, find $f^{\prime}(x)$
