5.6 Notes and Examples

L'Hôpital's Rule

1. Warm Up 1: Remember Limits? First substitute to determine if the limit is Type I, II, or III.

(a)
$$\lim_{x \to 1} \frac{x^3 - 1}{x^2 + x + 1}$$

(b)
$$\lim_{x \to 2} \frac{2}{x^2 - 4}$$

(c)
$$\lim_{x \to 2} \frac{x^2 + x - 6}{x^2 - 4}$$

2. Warm Up 2: Try these "Type III" limits with a calculator (Recall the Graph and Table Methods?) (a) $\lim_{x\to 0} \left(\frac{e^x - 1}{x}\right)$

(b)
$$\lim_{x \to 1^+} \left(\frac{1}{\ln x} - \frac{1}{x - 1} \right)$$

(c)
$$\lim_{x \to \infty} \left(1 + \frac{2}{x} \right)^x$$

3. Warm Up 2: Try these "Type III" limits by either factoring or multiplying top and bottom with the conjugate:

(a)
$$\lim_{x \to -1} \left(\frac{2x^2 - 2}{x + 1} \right)$$

(b)
$$\lim_{x \to \infty} \left(\frac{3x^2 - 1}{2x^2 + 1} \right)$$

(c)
$$\lim_{x \to 7} \left(\frac{\sqrt{x+2}-3}{x-7} \right)$$

4. Examples

(a)
$$\lim_{x \to \infty} \frac{x}{e^x}$$

(b)
$$\lim_{x \to \infty} \frac{e^x}{x}$$

(c)
$$\lim_{x \to 0} \frac{x}{e^x}$$

(d) $\lim_{x \to -\infty} x^2 e^x$ Hint: you need to write this as a fraction

(e)
$$\lim_{x \to 2} \frac{x^2 + x - 6}{x^2 - 4}$$

(f)
$$\lim_{x \to 0} \frac{4e^{2x} - 4}{x}$$

- 5. There are other indeterminate forms that you can use L'Hôpital's Rule with, but you first need to make the expression into a ratio (fractional form)
 - 1. ______ 2. _____ 3. _____ 4. _____ 5. _____ (a) 1^{\infty} form: $\lim_{x \to \infty} \left(1 + \frac{2}{x}\right)^x$

(b) ∞^0 form: $\lim_{x \to \infty} x^{1/x}$

(c) 0^0 form: $\lim_{x \to 0^+} x^x$

(d)
$$0 \cdot \infty$$
 form: $\lim_{x \to \infty} e^{-x} \sqrt{x}$

(e)
$$\infty - \infty$$
 form: $\lim_{x \to 1^+} \left(\frac{1}{\ln x} - \frac{1}{x-1} \right)$

Bonus round (not technically L'Hôpital, but using the same idea about rates):

6. Examples

(a)
$$\lim_{x \to \infty} \frac{e^x}{4^x - 1}$$

(b)
$$\lim_{x \to \infty} \frac{\ln x}{x^3 + 4}$$

(c)
$$\lim_{x \to \infty} \frac{x^3 - 2x + 1}{3x^4 + 3x - 7}$$

(d)
$$\lim_{x \to \infty} \frac{x^x}{x!}$$