L'Hôpital's Rule

1. Warm Up 1: Remember Limits? First substitute to determine if the limit is Type I, II, or III.
(a) $\lim _{x \rightarrow 1} \frac{x^{3}-1}{x^{2}+x+1}$
(b) $\lim _{x \rightarrow 2} \frac{2}{x^{2}-4}$
(c) $\lim _{x \rightarrow 2} \frac{x^{2}+x-6}{x^{2}-4}$
2. Warm Up 2: Try these "Type III" limits with a calculator (Recall the Graph and Table Methods?)
(a) $\lim _{x \rightarrow 0}\left(\frac{e^{x}-1}{x}\right)$
(b) $\lim _{x \rightarrow 1^{+}}\left(\frac{1}{\ln x}-\frac{1}{x-1}\right)$
(c) $\lim _{x \rightarrow \infty}\left(1+\frac{2}{x}\right)^{x}$
3. Warm Up 2: Try these "Type III" limits by either factoring or multiplying top and bottom with the conjugate:
(a) $\lim _{x \rightarrow-1}\left(\frac{2 x^{2}-2}{x+1}\right)$
(b) $\lim _{x \rightarrow \infty}\left(\frac{3 x^{2}-1}{2 x^{2}+1}\right)$
(c) $\lim _{x \rightarrow 7}\left(\frac{\sqrt{x+2}-3}{x-7}\right)$

Background of the new method for "Type III" limits: L'Hôpital's Rule

1. Named after Guillaume de L'Hôpital, who published in the first ever differential calculus textbook
2. Actually invented/discovered by Swiss mathematician Johann Bernoulli
3. The method uses derivatives to evaluate indeterminate limits.
4. Don't try it on $\lim _{x \rightarrow 3}\left(\frac{2 x+7}{4 x+1}\right)$. Can you guess why?

Now the new method: L'Hôpital's Rule

1. Sometimes, you are not able to simplify equations after doing direct \qquad
2. When this happens, it is called an \qquad form.
3. If $\lim _{x \rightarrow c} \frac{f(x)}{g(x)}$ is of the form \qquad or \qquad , then $\lim _{x \rightarrow c} \frac{f(x)}{g(x)}=$
4. In order to use L'Hôpital's Rule you must
(a) Write the expression in \qquad form
(b) State the it is either \qquad form or \qquad form, and you are using
\qquad rule. (most abbreviations are accepted)
(c) Take the limit of numerator's derivative \qquad the denominator's derivative.
5. Examples
(a) $\lim _{x \rightarrow \infty} \frac{x}{e^{x}}$
(b) $\lim _{x \rightarrow \infty} \frac{e^{x}}{x}$
(c) $\lim _{x \rightarrow 0} \frac{x}{e^{x}}$
(d) $\lim _{x \rightarrow-\infty} x^{2} e^{x}$
$x \rightarrow-\infty$
Hint: you need to write this as a fraction
(e) $\lim _{x \rightarrow 2} \frac{x^{2}+x-6}{x^{2}-4}$
(f) $\lim _{x \rightarrow 0} \frac{4 e^{2 x}-4}{x}$
6. There are other indeterminate forms that you can use L'Hôpital's Rule with, but you first need to make the expression into a ratio (fractional form)
7.
8. \qquad
9. \qquad
10.
11. \qquad
(a) 1^{∞} form: $\lim _{x \rightarrow \infty}\left(1+\frac{2}{x}\right)^{x}$
(b) ∞^{0} form: $\lim _{x \rightarrow \infty} x^{1 / x}$
(c) 0^{0} form: $\lim _{x \rightarrow 0^{+}} x^{x}$
(d) $0 \cdot \infty$ form: $\lim _{x \rightarrow \infty} e^{-x} \sqrt{x}$
(e) $\infty-\infty$ form: $\lim _{x \rightarrow 1^{+}}\left(\frac{1}{\ln x}-\frac{1}{x-1}\right)$

Bonus round (not technically L'Hôpital, but using the same idea about rates):

Using Relative Growth Rates to Evaluate a Limit to $\pm \infty$

When evaluating limits of the the form $\lim _{x \rightarrow \infty} \frac{f(x)}{g(x)}$, then the limit is

1. $\pm \infty$ if $f(x)$ grows \qquad than $g(x)$.
2. 0 if $f(x)$ grows \qquad than $g(x)$.

$$
\begin{gathered}
\text { As } x \rightarrow \infty \\
x^{x} \succ x!\succ a^{x} \succ x^{a} \succ \log _{a} x
\end{gathered}
$$

6. Examples
(a) $\lim _{x \rightarrow \infty} \frac{e^{x}}{4^{x}-1}$
(b) $\lim _{x \rightarrow \infty} \frac{\ln x}{x^{3}+4}$
(c) $\lim _{x \rightarrow \infty} \frac{x^{3}-2 x+1}{3 x^{4}+3 x-7}$
(d) $\lim _{x \rightarrow \infty} \frac{x^{x}}{x!}$
