Bases other than e and Applications

1. Precalc "Warm up": Solve for $x$
(a) $3^{x}=\frac{1}{81}$
(b) $\log _{2} x=-4$
(c) Half-life is the time it takes for half of the material to decay. When modeling the half-life of a radioactive substance, it is convenient to use $\frac{1}{2}$ as the base for the exponential model. For example, the half-life of Carbon-14 is about 5730 years (actually $5730 \pm 40$ ), so if you start with an initial amount $A_{0}$ of the substance, then the amount $A$ remaining after $t$ years can be modeled by

$$
A=A_{0}\left(\frac{1}{2}\right)^{t / 5730}
$$

Often we use $A_{0}=1$ to represent $100 \%$, and then $A$ would be the percentage of what is left.

1. What percentage of Carbon-14 is left after 2,000 years?
2. When organic material is "Carbon dated" the percentage of Carbon-14 can be determined by comparing it to the amount of Carbon-12 or Carbon-13 (which are both stable). If we detect that $93 \%$ of the Carbon-14 is remaining, how old is the organic material?
3. We now know a lot about $e^{x}$ and its inverse $\qquad$ . To handle any other base $a$ we will use the fourth property of $\log$ (the change of base property): $\log _{a} x=$ $\qquad$
4. Definitions: If $a, x \in \mathbb{R}$ and $a>0$ :
(a) $a^{x}=$ $\qquad$
(b) $\log _{a} x=$ $\qquad$
(c) If $a=10$, instead of writing $\log _{10} x$ we write $\qquad$ .
(d) If $a=1$, then $y=1^{x}$ is the constant function $\qquad$

## Derivative Theorems

1. $\frac{d}{d x}\left[a^{x}\right]=a^{x} \ln a$

Proof: If $f(x)=a^{x}=e^{\ln a^{x}}=e^{x \ln a}$ then
$f^{\prime}(x)=$ $\qquad$ $=$ $\qquad$
2. In general, $\frac{d}{d x}\left[a^{u}\right]=(\ln a) a^{u} \frac{d u}{d x}=(\ln a) a^{u} u^{\prime}$
3. $\frac{d}{d x}\left[\log _{a} x\right]=\frac{1}{x \ln a}$

Proof: If $f(x)=\log _{a} x=$ $\qquad$ then $f^{\prime}(x)=$ $\qquad$ $=\frac{1}{x \ln a}$
4. In general $\frac{d}{d x}\left[\log _{a} u\right]=\frac{u^{\prime}}{u \ln a}$
4. Derivative Examples
(a) If $y=2^{x}$, then $y^{\prime}=$
(b) If $y=2^{3 x}$, then $y^{\prime}=$
(c) If $y=\log \cos x$, then $y^{\prime}=$
(d) If $f(x)=5^{x^{2}-2 x}$, find $f^{\prime}(x)$.
(e) If $f(x)=x\left(4^{-x}\right)$, find $f^{\prime}(x)$.
(f) If $f(x)=\log _{5} \sqrt[3]{2 x^{2}+7}$, find $f^{\prime}(x)$.Hint: use the properties of exponents first
(g) If $f(x)=\log \frac{5 x^{3}}{\left(x^{2}-3 x\right)^{3}}$, find $f^{\prime}(x)$. Hint: separate the log first
5. Watch your step: Keep in mind what is a variable, and what is a constant.
(a) If $y=e^{e}$, then $y^{\prime}=$
(b) If $y=e^{x}$, then $y^{\prime}=$
(c) If $y=x^{e}$, then $y^{\prime}=$
(d) If $y=x^{x}$, then $y^{\prime}=$

## Integration Theorems

1. $\int a^{x} d x=\frac{a^{x}}{\ln a}+C$
2. In general, $\int a^{u} d x=\left(\frac{1}{\ln a}\right) a^{u}+C$

Proof: Since $a^{x}=e^{\ln a^{x}}=e^{x \ln a}$, we can write $\int a^{x} d x=$
Next Let $u=x \ln a$, so that $d u=$ $\qquad$
6. (a) $\int 2^{x} d x$
(b) $\int \frac{3^{-2 / x}}{x^{2}} d x$
(c) $\int_{-1}^{3} 3^{x} d x$
(d) $\int_{0}^{1} 3^{x}-2^{x} d x$

