5.5 Notes and Examples

Seat:

Bases other than e and Applications

1. Precalc "Warm up": Solve for x

(a)
$$3^x = \frac{1}{81}$$

(b) $\log_2 x = -4$

(c) Half-life is the time it takes for half of the material to decay. When modeling the half-life of a radioactive substance, it is convenient to use $\frac{1}{2}$ as the base for the exponential model. For example, the half-life of Carbon-14 is about 5730 years (actually 5730 ± 40), so if you start with an initial amount A_0 of the substance, then the amount A remaining after t years can be modeled by

$$A = A_0 \left(\frac{1}{2}\right)^{t/5730}$$

Often we use $A_0 = 1$ to represent 100%, and then A would be the percentage of what is left.

1. What percentage of Carbon-14 is left after 2,000 years?

2. When organic material is "Carbon dated" the percentage of Carbon-14 can be determined by comparing it to the amount of Carbon-12 or Carbon-13 (which are both stable). If we detect that 93% of the Carbon-14 is remaining, how old is the organic material?

2. We now know a lot about e^x and its inverse _____. To handle any other base a we will use

the fourth property of log (the change of base property): $\log_a x =$

- 3. Definitions: If $a, x \in \mathbb{R}$ and a > 0:
 - (a) $a^x =$ _____
 - (b) $\log_a x =$ _____
 - (c) If a = 10, instead of writing $\log_{10} x$ we write _____.
 - (d) If a = 1, then $y = 1^x$ is the constant function _____

Derivative Theorems
1.
$$\frac{d}{dx}[a^x] = a^x \ln a$$

Proof: If $f(x) = a^x = e^{\ln a^x} = e^{x \ln a}$ then
 $f'(x) = \underline{\qquad} = \underline{\qquad}$
2. In general, $\frac{d}{dx}[a^u] = (\ln a)a^u \frac{du}{dx} = (\ln a)a^u u'$
3. $\frac{d}{dx}[\log_a x] = \frac{1}{x \ln a}$
Proof: If $f(x) = \log_a x = \underline{\qquad}$ then $f'(x) = \underline{\qquad} = \frac{1}{x \ln a}$
4. In general $\frac{d}{dx}[\log_a u] = \frac{u'}{u \ln a}$

- 4. Derivative Examples
 - (a) If $y = 2^x$, then y' =
 - (b) If $y = 2^{3x}$, then y' =
 - (c) If $y = \log \cos x$, then y' =

(d) If
$$f(x) = 5^{x^2 - 2x}$$
, find $f'(x)$.

(e) If $f(x) = x(4^{-x})$, find f'(x).

(f) If $f(x) = \log_5 \sqrt[3]{2x^2 + 7}$, find f'(x). *Hint: use the properties of exponents first*

(g) If
$$f(x) = \log \frac{5x^3}{(x^2 - 3x)^3}$$
, find $f'(x)$. Hint: separate the log first

- 5. Watch your step: Keep in mind what is a variable, and what is a constant. (a) If $y = e^e$, then y' =
 - (b) If $y = e^x$, then y' =
 - (c) If $y = x^e$, then y' =
 - (d) If $y = x^x$, then y' =

Integration Theorems

1.
$$\int a^{x} dx = \frac{a^{x}}{\ln a} + C$$

2. In general,
$$\int a^{u} dx = \left(\frac{1}{\ln a}\right) a^{u} + C$$

Proof: Since $a^{x} = e^{\ln a^{x}} = e^{x \ln a}$, we can write
$$\int a^{x} dx =$$

Next Let $u = x \ln a$, so that $du =$ _____

6. (a) $\int 2^x dx$

(b)
$$\int \frac{3^{-2/x}}{x^2} dx$$

(c)
$$\int_{-1}^{3} 3^x dx$$

(d)
$$\int_0^1 3^x - 2^x \, dx$$