5.4: Exponential Functions: Differentiation and Integration

Definition and Properties

1. The Natural Exponential Function \qquad is the \qquad function of the

Natural \qquad function \qquad
2. \qquad if and only if \qquad
3. $e^{a} e^{b}=$ \qquad
4. $\frac{e^{a}}{e^{b}}=$ \qquad
5. $\left(e^{a}\right)^{b}=$ \qquad
6. The domain of e^{x} is \qquad and the Range is \qquad
7. The function e^{x} is
(a) \qquad
(b) \qquad
(c) \qquad , (that is \qquad)
8. The graph of e^{x} is always concave \qquad
9. $\lim _{x \rightarrow-\infty} e^{x}=$ \qquad and $\lim _{x \rightarrow \infty} e^{x}=$ \qquad
10. $\frac{d}{d x} e^{x}=$ \qquad and $\frac{d}{d x} e^{u}=$ \qquad
11. $\int e^{x} d x=$ \qquad and $\int e^{u} d u=$ \qquad

1. Review
(a) Solve $7=e^{x+1}$
2. Differentiation
(a) If $f(x)=e^{-3 / x}$ find $f^{\prime}(x)$
(b) If $f(x)=x^{2} e^{x}$ find $f^{\prime}(x)$
3. Find the relative extrema of $f(x)=x e^{x}$
4. The spread of a flu in a certain school is modeled by $P(t)=\frac{100}{1+e^{3-t}}$, where $P(t)$ is the total number of students infected t days after the flu was first noticed.
(a) Estimate the initial number of students infected by the flu.
(b) How fast is the flu spreading after 3 days?
5. Integration
(a) $\int e^{4 x-7} d x=$
(b) $\int \cos x \cdot e^{\sin x} d x=$
(c) $\int \frac{e^{1 / x}}{x^{2}} d x=$
(d) $\int \frac{e^{x}}{2+e^{x}} d x=$
(e) $\int e^{x} \cos \left(e^{x}\right) d x=$
6. Definite Integrals
(a) $\int_{0}^{1} e^{-x} d x=$
(b) $\int_{0}^{1} \frac{e^{x}}{1+e^{x}} d x=$
(c) $\int_{-1}^{0} e^{x} \cos \left(e^{x}\right) d x=$
