5.1 Notes and Examples

 $Natural \ Logarithm \ Derivatives$

	Natural Logarithm Derivatives: Definitions and Properties
1.	(a) Domain:
	(b) Range:
	(c) The Natural logarithmic function is defined by $\ln x = \int$
	(d) The function is always
	1.
	2.
	3.
	(e) Properties of Natural logs
	1. $\ln(1) =$
	2. $\ln(e^x) =$
	3. $\ln(ab) =$
	4. $\ln(a^n) =$
	5. $\ln\left(\frac{a}{b}\right) =$
	(f) is the base of the Natural Log because $\ln e =$
	(g) The letter denotes the positive real number such that $\ln e = \int$
Sk	etch $f(x) = \ln x$

2. J(x)

(a) $\lim_{x \to 0^+} \ln x =$

(b)
$$\lim \ln x =$$

 $x \rightarrow 0^-$ (c) $\lim_{x \to 0} \ln x =$ (d) $\lim_{x \to \infty} \ln x =$

3. Expand the following

(a) $\ln 3e^2$

(b)
$$\ln \frac{10}{9}$$

(c)
$$\ln \sqrt{3x+2}$$

(d)
$$\ln \frac{6x}{5}$$

(e)
$$\ln \frac{(x^2+3)^2}{x\sqrt[3]{x^2+1}}$$

4. Condense $2 [\ln x - \ln(x+1) - \ln(x-1)]$

5. Derivative of the Natural Logarithmic Function

(a) For
$$x > 0$$
, $\frac{d}{dx} [\ln x] =$

(b) If u is a function of x, then for u > 0, $\frac{d}{dx} [\ln u] =$

(c) If u is a function of x, then for u > 0, $\frac{d}{dx} \left[\ln |u| \right] =$

6. Differentiate

(a) $\ln(x^2 - 5)$

(b)
$$\ln \frac{x^2}{\sqrt{2x^3}}$$

Always simplify/expand before differentiating

(c) $\ln\sqrt{x+1}$

(d)
$$\ln \frac{x(x^2+1)}{\sqrt{2x^3-1}}$$

(e) $\ln \cos x$

7. Find the relative extrema of $\ln(x^2 + 2x + 3)$