Natural Logarithm Derivatives

Natural Logarithm Derivatives: Definitions and Properties

1. (a) Domain:
(b) Range:
(c) The Natural logarithmic function is defined by $\ln x=\int$
(d) The function is always
2.
3.
4.

(e) Properties of Natural logs

1. $\ln (1)=$
2. $\ln \left(e^{x}\right)=$
3. $\ln (a b)=$
4. $\ln \left(a^{n}\right)=$
5. $\ln \left(\frac{a}{b}\right)=$
(f) \qquad is the base of the Natural Log because $\ln e=$
(g) The letter \qquad denotes the positive real number such that $\ln e=\int$
6. Sketch $f(x)=\ln x$

(a) $\lim _{x \rightarrow 0^{+}} \ln x=$
(b) $\lim _{x \rightarrow 0^{-}} \ln x=$
(c) $\lim _{x \rightarrow 0} \ln x=$
(d) $\lim _{x \rightarrow \infty} \ln x=$
7. Expand the following
(a) $\ln 3 e^{2}$
(b) $\ln \frac{10}{9}$
(c) $\ln \sqrt{3 x+2}$
(d) $\ln \frac{6 x}{5}$
(e) $\ln \frac{\left(x^{2}+3\right)^{2}}{x \sqrt[3]{x^{2}+1}}$
8. Condense $2[\ln x-\ln (x+1)-\ln (x-1)]$
9. Derivative of the Natural Logarithmic Function
(a) For $x>0, \frac{d}{d x}[\ln x]=$
(b) If u is a function of x, then for $u>0, \frac{d}{d x}[\ln u]=$
(c) If u is a function of x, then for $u>0, \frac{d}{d x}[\ln |u|]=$
10. Differentiate
(a) $\ln \left(x^{2}-5\right)$
(b) $\ln \frac{x^{2}}{\sqrt{2 x^{3}}}$

Always simplify/expand before differentiating
(c) $\ln \sqrt{x+1}$
(d) $\ln \frac{x\left(x^{2}+1\right)}{\sqrt{2 x^{3}-1}}$
(e) $\ln \cos x$
7. Find the relative extrema of $\ln \left(x^{2}+2 x+3\right)$

