Definition of an Integral, Integration by Geometry, Properties of Integrals

1. Warm up question 1: A rocket has velocity $v(t)$ after being launched upwards from a initial height of 0 feet at time $t=0$ seconds. The velocity of the rocket is recorded for select values of t over the interval $0 \leq t \leq 80$ seconds:

t (seconds)	0	10	20	30	40	50	60	70	80
$v(t)$ in $(\mathrm{ft} / \mathrm{sec})$	5	14	22	29	35	40	44	47	49

(a) Find the average acceleration of the rocket over the the time interval $0 \leq t \leq 80$
(b) What is the meaning of $\int_{10}^{70} v(t) d t$ in this context?
(c) Use a midpoint Riemann sum with 3 subintervals of equal length to approximate $\int_{10}^{70} v(t) d t$
2. Warm up question 2: Water is flowing into a tank at the rate of $r(t)$, where $r(t)$ is measured in gallons per minute, and time t is measured in minutes. The tank contains 15 gallons of water at time $t=0$ minutes. Values of $r(t)$ for selected values of t are given in the table below.

t (minutes)	0	4	7	9
$r(t)$ in (gallons per minute)	9	6	4	3

(a) Approximate the number of gallons of water in the tank at time $t=9$ using a trapezoidal sum with three subintervals.
(b) Write an integral expression of what we just estimated.
3. Definition of Integral (p 272) If f is defined on the closed interval $[a, b]$ and the limit of Riemann sums over partitions Δ

$$
\lim _{\|\Delta\| \rightarrow 0} \sum_{i=1}^{n} f\left(c_{i}\right) \cdot \Delta x_{i}
$$

exists, then f is said to be \qquad on $[a, b]$ and the limit is denoted by

$$
\lim _{\|\Delta\| \rightarrow 0} \sum_{i=1}^{n} f\left(c_{i}\right) \cdot \Delta x_{i}=
$$

\qquad
The limit is called the \qquad . of f from a to b where the number a is called
the \qquad . and the number b is called the \qquad .
4. Continuity Implies Integrability : If a function f is continuous on the closed interval $[a, b]$, then
\qquad . That is, \qquad exists.
5. Use the limit definition to evaluate $\int_{-2}^{1} 2 x d x$.
(a) If the base of the rectangle $\Delta x=\frac{b-a}{n}$, then here Δx is:
(b) If $c_{i}=a+i(\Delta x)$, then here c_{i} is:
(c) So the height of the rectangle $f\left(c_{i}\right)$ is:
(d) $\lim _{\|\Delta x\| \rightarrow 0} \sum_{i=1}^{n} f\left(c_{i}\right) \cdot \Delta x_{i}=\lim _{n \rightarrow \infty} \sum_{i=1}^{n} f\left(c_{i}\right) \cdot \Delta x$
6. Integration by Geometry A definite integral describes the signed area between the function and the x-axis. The area below the x-axis is negative, and the area above the x-axis is positive.

Sketch and evaluate by using a geometric formula.
(a) $\int_{1}^{7} 6 d x=$
(b) $\int_{1}^{3} x+2 d x=$
(c) $\int_{-2}^{2} \sqrt{4-x^{2}} d x=$
(d) $\int_{-4}^{4} f(x) d x=$

7. Properties of Integrals (page 275-276)
(a) $\int_{a}^{a} f(x) d x=$
(b) $\int_{b}^{a} f(x) d x=$
(c) $\int_{a}^{b} k \cdot f(x) d x=$
(d) If $a<c<b$, then $\int_{a}^{b} f(x) d x=$
(e) $\int_{a}^{b} f(x)+g(x) d x=$
(f) If $f(x) \geq 0$ for every x in $[a, b]$, then
(g) If $f(x) \leq g(x)$ for every x in $[a, b]$, then
8. Given $\int_{0}^{3} f(x) d x=4$ and $\int_{3}^{7} f(x) d x=-1$ Find
(a) $\int_{0}^{7} f(x) d x$
(b) $\int_{3}^{7} 2 f(x) d x$
(c) $\int_{5}^{5} f(x) d x$
(d) $\int_{7}^{3} f(x) d x$
9. Let f and g be continuous functions. If $\int_{2}^{6} f(x) d x=5$ and $\int_{6}^{2} g(x) d x=7$, then $\int_{2}^{6} 3 f(x)+g(x) d x=$
10. Given $\int_{10}^{0} f(a) d a=-12$ and $\int_{4}^{10} f(b) d b=7$, find $\int_{0}^{4} f(q) d q$

