4.3 Notes and Examples

Definition of an Integral, Integration by Geometry, Properties of Integrals

1. Warm up question 1: A rocket has velocity v(t) after being launched upwards from a initial height of 0 feet at time t = 0 seconds. The velocity of the rocket is recorded for select values of t over the interval $0 \le t \le 80$ seconds:

t (seconds)	0	10	20	30	40	50	60	70	80
v(t) in (ft/sec)	5	14	22	29	35	40	44	47	49

- (a) Find the **average acceleration** of the rocket over the time interval $0 \le t \le 80$
- (b) What is the meaning of $\int_{10}^{70} v(t) dt$ in this context?

(c) Use a midpoint Riemann sum with 3 subintervals of equal length to approximate $\int_{10}^{70} v(t) dt$

2. Warm up question 2: Water is flowing into a tank at the rate of r(t), where r(t) is measured in gallons per minute, and time t is measured in minutes. The tank contains 15 gallons of water at time t = 0 minutes. Values of r(t) for selected values of t are given in the table below.

t (minutes)	0	4	7	9
r(t) in (gallons per minute)	9	6	4	3

- (a) Approximate the number of gallons of water in the tank at time t = 9 using a trapezoidal sum with three subintervals.
- (b) Write an integral expression of what we just estimated.

- Page 2 of 4
- 3. Definition of Integral (p 272) If f is defined on the closed interval [a, b] and the limit of Riemann sums over partitions Δ

exists, then f is said to be ______ on [a, b] and the limit is denoted by

$$\lim_{\|\Delta\| \to 0} \sum_{i=1}^{n} f(c_i) \cdot \Delta x_i = _$$

The limit is called the ______. of f from a to b where the number a is called

the ______. and the number b is called the ______.

4. Continuity Implies Integrability : If a function f is continuous on the closed interval [a, b], then

_____. That is, ______ exists.

- 5. Use the limit definition to evaluate $\int_{-2}^{1} 2x \, dx$. (a) If the base of the rectangle $\Delta x = \frac{b-a}{n}$, then here Δx is:
 - (b) If $c_i = a + i(\Delta x)$, then here c_i is:
 - (c) So the height of the rectangle $f(c_i)$ is:

(d)
$$\lim_{\|\Delta x\| \to 0} \sum_{i=1}^{n} f(c_i) \cdot \Delta x_i = \lim_{n \to \infty} \sum_{i=1}^{n} f(c_i) \cdot \Delta x$$

6. Integration by Geometry A definite integral describes the signed area between the function and the *x*-axis. The area below the *x*-axis is negative, and the area above the *x*-axis is positive.

Sketch and evaluate by using a geometric formula.

(a)
$$\int_{1}^{7} 6 \, dx =$$

(b)
$$\int_{1}^{3} x + 2 \, dx =$$

(c)
$$\int_{-2}^{2} \sqrt{4 - x^2} \, dx =$$

(d)
$$\int_{-4}^{4} f(x) dx =$$

7. Properties of Integrals (page 275-276)

(a)
$$\int_{a}^{a} f(x) dx =$$

(b)
$$\int_{b}^{a} f(x) dx =$$

(c)
$$\int_{a}^{b} k \cdot f(x) dx =$$

(d) If $a < c < b$, then
$$\int_{a}^{b} f(x) dx =$$

(e)
$$\int_{a}^{b} f(x) + g(x) dx =$$

(f) If $f(x) > 0$ for a constant of all d

- (f) If $f(x) \ge 0$ for every x in [a, b], then
- (g) If $f(x) \leq g(x)$ for every x in [a, b], then

8. Given
$$\int_{0}^{3} f(x) dx = 4$$
 and $\int_{3}^{7} f(x) dx = -1$ Find
(a) $\int_{0}^{7} f(x) dx$

(b)
$$\int_{3}^{7} 2f(x) dx$$

(c)
$$\int_{5}^{5} f(x) dx$$

(d)
$$\int_{7}^{3} f(x) dx$$

9. Let f and g be continuous functions. If
$$\int_2^6 f(x) dx = 5$$
 and $\int_6^2 g(x) dx = 7$, then $\int_2^6 3f(x) + g(x) dx = 6$

10. Given
$$\int_{10}^{0} f(a) \, da = -12$$
 and $\int_{4}^{10} f(b) \, db = 7$, find $\int_{0}^{4} f(q) \, dq$

St. Francis High School