3.4 Notes and Examples

Name:

Concavity & The 2nd Derivative Test

1. Determine the open intervals on which the graph of the function is concave upward or concave downward

- 2. Find the points of inflection and discuss the concavity of the graph of the function $f(x) = -x^3 + 6x^2 5$ (a) f'(x) = f''(x) =
 - (b) Sign lines for f' and f'':
 - (c) f is increasing on f is concave up on
 - (d) f is decreasing on f is concave down on
- St. Francis High School

	1. If $f'(c)$	and	f''(c)	, then $f(c)$ is a	then $f(c)$ is a relative	
	2. If $f'(c)$	and	f''(c)	, then $f(c)$ is a	relative	
Jse youi	the Second Deriva r answer.	tive Test, if po	ssible, to find the	e relative extrema of	$f(x) = -3x^5 + 5x^3$. Ju	
(a)	f'(x) =			f''(x) =		
(b)	f'(x) = 0 when x	=:		f'' at the zeros of f'		
(c)	f has a is relative		at $x = $	by the 2^{nd}	derivative test because	
	<i>f</i> ′(_) =	_ and $f''($)	0	
(d)	f has a is relative		at $x = $	by the 2^{nd}	derivative test because	
	<i>f</i> ′(_) =	_ and $f''($)	0	
	$f(x) = x^4 - 2x^2 - $	1. Find any ex	strema of f . Just	ify your conclusions. f''(x) =		
Let (a)	f'(x) =					
(a) (b)	f'(x) = f'(x) = 0 when x	=:		Sign line for f'' :		
(b) (c)	f'(x) = f'(x) = 0 when xf has a is relative	=:	at $x = \$	Sign line for f'' : by the 2^{nd}	derivative test because	
(b)	f'(x) = f'(x) = 0 when xf has a is relative $f'(_$	=: 	at $x = $ and $f''($	Sign line for f'' : by the 2^{nd})	derivative test because 0	
(b) (c)	f'(x) = f(x) = 0 when xf has a is relative $f'(_$ f has a is relative	=:) =	at $x =$ and $f''($ at $x =$	Sign line for f'' : by the 2^{nd}) by the 2^{nd}	derivative test because 0 derivative test because	

AP Style Practice

5. Suppose that the function f has a continuous second derivative for all x, and that f(3) = -4, f'(3) = 1, f''(3) = -2. Let g be a function whose derivative is given by $g'(x) = (x^2 - 9)(2f(x) + 5f'(x))$ for all x. Does g have a local maximum or a local minimum at x = 3? Justify your answer.

- 6. (Calculator Active) The derivative of the function f is given by $f'(x) = x \cos(x^2)$. How many points of inflection does the graph of f have on the open interval (-2, 2)? Justify your answer.
- 7. (Calculator Active) The derivative of the function f is given by $f'(x) = e^{\sin x} \cos x 1$ for $0 < x < 2\pi$. On what interval(s) is f concave down? Are there any points of inflection? Justify your answers.
- 8. Given the graph of f' (the derivative of f) below, do the following and justify your conclusions:

- (a) Find all critical points of f
- (b) Find the intervals where f is increasing
- (c) Find the intervals where f is decreasing
- (d) Find the local extrema of f
- (e) Find the intervals where f is concave up
- (f) Find the intervals where f is concave down
- (g) Find all points of inflection of f.