Implicit Differentiation

Implicit vs. Explicit:

Explicit Examples:

Implicit Examples:

1. Use the chain rule as you differentiate with respect to x :
(a) $\frac{d}{d x}\left[x^{3}\right]=$
(b) $\frac{d}{d x}\left[y^{3}\right]=$
(c) $\frac{d}{d x}[x+3 y]=$
(d) $\frac{d}{d x}\left[x y^{2}\right]=$

Ok, now we use this to differentiate both sides of an equation....

Guidelines for Implicit Differentiation

1. Differentiate both sided of the equation with respect to \qquad (or sometimes \qquad or some other variable)
2. Collect all terms involving \qquad (or \qquad) on the left side of the equation, and move all other terms to the \qquad side of the equation.
3. $\frac{d y}{d x}\left(\right.$ or $\left.\frac{d y}{d t}\right)$ out of the side of the equation.
4. \qquad for \qquad (or \qquad).
5. Find $\frac{d y}{d x}$ given that $y^{3}+y^{2}-5 y-x^{2}=-4$
6. Find the tangent line of the circle $x^{2}+y^{2}=25$ at the point $(4,3)$.
7. Consider the curve $y^{3}+y^{2}-5 y-x^{2}=-4$. What is the slope of the tangent line at $(1,-3)$?

8. Find the tangent line equation for $y^{3}-5 x y-x^{2}=8$ at the point $(0,2)$

9. Consider the Ellipse $x^{2}-x y+y^{2}=9$

(a) Find the tangent line at the point $(3,0)$
(b) Find the coordinates of the points when the tangent line is horizontal.
(c) Find the coordinates of the points when the tangent line is vertical.
