The Chain Rule and the General Power Rule

Axle 1: y revolutions per minute
Axle 2: u revolutions per minute Axle 3: x revolutions per minute

Because the first axle must make three revolutions to turn the second axle once, $\frac{d y}{d u}=$ \qquad
Because the second axle must make two revolutions to turn the third axle once, $\frac{d u}{d x}=$ \qquad
What is the rate of change of the first axle with respect to the third axile?

Derivative of the Composition of Functions

1. The Chain Rule : $\frac{d y}{d x}=$
or $\frac{d y}{d t}=$
or $\frac{d y}{d x}=$
or $\frac{d}{d x}[f(g(x))]=$
2. Find the derivative of $f(x)=\sin 2 x$
3. Find the derivative of $f(x)=\sqrt{3 x^{2}-x+1}$
4. The order of the composition matters. Let's practice finding the inner and out functions:

Function $h(x)$	Outer function $f(u)$	Inner function $g(x)$	$h^{\prime}(x)=f^{\prime}(g(x)) \cdot g^{\prime}(x)$ or $\frac{d y}{d x}=\frac{d y}{d u} \cdot \frac{d u}{d x}$
$\cos \left(x^{2}+1\right)$			
$\ln (\sec x)$			
$e^{-x^{2}}$			
$\sin \left(e^{x}\right)$			
$\cos ^{2}(x)$			

4. (a) $\frac{d}{d x}\left[\sqrt{3 x^{2}+4}\right]=$
(b) $\frac{d}{d x}\left[\sin ^{2} x\right]=$
(c) $\frac{d}{d x}\left[\sin x^{2}\right]=$
5. Composition of 3 functions
(a) $\frac{d}{d x}\left[\sin e^{x^{2}}\right]=$

The General Power Rule

...The power rule with the chain rule added....
If $y=[u(x)]^{n}$ then

$$
\frac{d y}{d x}=
$$

or, equivalently,

$$
\frac{d}{d x}\left[u^{n}\right]=
$$

6. Find the derivative of $f(x)=\left(3 x-2 x^{2}\right)^{3}$
7. Find the derivative of $f(x)=\sqrt[3]{\left(x^{2}-1\right)^{2}}$
8. Find the derivative of $g(t)=\frac{-7}{(2 t-3)^{2}}$
9. Find the derivative of $f(x)=\frac{1}{x^{2}+1}$
10. Trig functions with the chain rule added: If u is a function of $x \ldots$
(a) $\frac{d}{d x}[\sin u]=$
(b) $\frac{d}{d x}[\cos u]=$
(c) $\frac{d}{d x}[\tan u]=$
(d) $\frac{d}{d x}[\sec u]=$
(e) $\frac{d}{d x}[\cot u]=$
(f) $\frac{d}{d x}[\csc u]=$
11. Find any equation of the tangent line to the graph of $f(x)=2 \sin x+\cos (2 x)$ at the point $(\pi, 1)$. Then determine all the values of x in the interval $(0,2 \pi)$ at which the graph of f has a horizontal tangent.
