2.4 Notes and Examples

Name:

The Chain Rule and the General Power Rule

Derivative of the Composition of Functions 1. The Chain Rule : $\frac{dy}{dx} =$ or $\frac{dy}{dt} =$ or $\frac{dy}{dx} =$ or $\frac{d}{dx} [f(g(x))] =$

1. Find the derivative of $f(x) = \sin 2x$

2. Find the derivative of $f(x) = \sqrt{3x^2 - x + 1}$

Page 2 of 4

3. The order of the composition matters. Let's practice finding the inner and out functions:

Function $h(x)$	Outer function $f(u)$	Inner function $g(x)$	$h'(x) = f'(g(x)) \cdot g'(x) \text{ or } \frac{dy}{dx} = \frac{dy}{du} \cdot \frac{du}{dx}$
$\cos(x^2 + 1)$			
$\ln(\sec x)$			
e^{-x^2}			
$\sin(e^x)$			
$\cos^2(x)$			

4. (a) $\frac{d}{dx}[\sqrt{3x^2+4}] =$

(b)
$$\frac{d}{dx}[\sin^2 x] =$$

(c)
$$\frac{d}{dx}[\sin x^2] =$$

5. Composition of 3 functions

(a)
$$\frac{d}{dx}[\sin e^{x^2}] =$$

The General Power RuleThe power rule with the chain rule added.... If $y = [u(x)]^n$ then $\frac{dy}{dx} =$ or, equivalently, $\frac{d}{dx} [u^n] =$

6. Find the derivative of $f(x) = (3x - 2x^2)^3$

7. Find the derivative of $f(x) = \sqrt[3]{(x^2 - 1)^2}$

8. Find the derivative of $g(t) = \frac{-7}{(2t-3)^2}$

9. Find the derivative of $f(x) = \frac{1}{x^2 + 1}$

10. Trig functions with the chain rule added: If u is a function of x...

(a)
$$\frac{d}{dx} [\sin u] =$$

(b) $\frac{d}{dx} [\cos u] =$
(c) $\frac{d}{dx} [\tan u] =$
(d) $\frac{d}{dx} [\sec u] =$
(e) $\frac{d}{dx} [\cot u] =$
(f) $\frac{d}{dx} [\csc u] =$

11. Find any equation of the tangent line to the graph of $f(x) = 2 \sin x + \cos(2x)$ at the point $(\pi, 1)$. Then determine all the values of x in the interval $(0, 2\pi)$ at which the graph of f has a horizontal tangent.