Product and Quotient Rules and Higher Order Derivatives

Slightly Less Basic Derivative Rules		
1. The Product Rule: $\frac{d}{dx}[f(x) \cdot g(x)] =$		
2. The Quotient Rule: $\frac{d}{dx} \left[\frac{f(x)}{g(x)} \right] =$		
3. The Chain Rule : $\frac{d}{dx}[f(g(x))] =$ More on this next time		
1. Now use your words		
(a) $\frac{d}{dx}[f(x) \cdot g(x)] = \text{The}$ of the 1 st function	$_$ the 2 nd $_$	PLUS

the derivative of the ______ times the ______
(b)
$$\frac{d}{dx} \left[\frac{f(x)}{g(x)} \right] =$$
 The ______ of the 1st function ______ the 2nd _____ MINUS _____
the derivative of the ______ times the ______ ALL DIVIDED BY ______ SQUARED.

2. If
$$h(x) = (3x - 2x^2)(5 + 4x)$$
, find $h'(x)$

	f	g
Function		
Derivative		

h'(x) =

3. If
$$y = \frac{5x-2}{x^2+1}$$
, find y'

	f	g
Function		
Derivative		

y' =

4. If $y = 3x^2 \sin x$, find y'

5. If $y = 2x \cos x - 2 \sin x$, find y'

$$6. \quad \frac{d}{dx} \left[\frac{3 - \frac{1}{x}}{x + 5} \right] =$$

7. Given g(2) = 3, g'(2) = -4, h(2) = -1, h'(x) = 5, answer the following: (a) If f(x) = g(x)h(x), find f'(2)

(b) If
$$q(x) = \frac{g(x)}{h(x)}$$
, find $q'(2)$

8. $f(x) = \frac{x^2}{x^2 + 1}$. Find the point(s) at which the graph of f has a horizontal tangent line.

St. Francis High School

9. Now we can do the rest of the trig functions!

(a)
$$\frac{d}{dx}(\tan x) = \frac{d}{dx}\left[\frac{\sin x}{\cos x}\right] =$$

(b)
$$\frac{d}{dx}(\sec x) = \frac{d}{dx}\left[\frac{1}{\cos x}\right] =$$

10. "If all you have is a hammer, then everything looks like a nail." These all these are easier WITHOUT using the quotient rule:

(a)
$$\frac{d}{dx}\left[\frac{x^2+3x}{6}\right] =$$

(b)
$$\frac{d}{dx}\left[\frac{5x^4}{8}\right] =$$

(c)
$$\frac{d}{dx}\left[\frac{-3(3x-2x^2)}{7x}\right] =$$

(d)
$$\frac{d}{dx} \left[\frac{9}{5x^2} \right] =$$

Higher Order Derivatives Recall from last time:

- (a) Position function:
- (b) Velocity function:
- (c) Acceleration function:

Taking a derivative of a derivative can just keep going and going...

Notation of Higher Order derivatives:
If f is a n -times differentiable function, we write:
1. First derivative:
2. Second derivative:
3. Third derivative:
4. Fourth derivative:
5. n^{th} derivative:

11. Because the moon has no atmosphere, a falling object on the moon encounters no air resistance. In 1971, Apollo 15 astronaut David Scott demonstrated that a feather and a hammer fall at the same rate on the moon (https://youtu.be/oYEgdZ3iEKA). The position function for each of these falling objects is given by: $s(t) = -0.8128t^2 + 2$, where s(t) is measured in meters, and t is the time in seconds. What is the acceleration due to gravity on the moon? How many times greater is the Earth's acceleration due to gravity?