Section 2.2: Derivatives of Polynomials and Exponential
Functions

Alternative Notations for the Derivative

If y= f(x), then
dy _
— = X
e f'(x)
is known as the derivative of y with respect to x.

For example, if we have the function y = f(x) = 2x*> —x + 1, then we can write

d—y:f'(x)=4x—1.
dx

For doing intermediate computations, we have the following notation:
d
—(f(x))=D,(f(x))
dx
Thus, we can say
d 2 2
—2x"=x+1)=D (2x" —=x+1)=4x-1
dx )
Also, to evaluate a derivative at a point, say x = a, we write

a)=2
Ja)=—-

X=a

Hence, if f'(x)=4x—1, then

f'(3)=Z—y _43)-1=12-1=11.

Xlx=3




Basic Derivative Formulas

1. di(k) =0, where £ is a constant (for our purposes, a real number).
X

d i k-1
2. —(x")=kx
dx( )

d
3. —(e¥)=¢"
dx( )

4. i(sinx) = COSX
dx

5. i(cosx) = —sinx
dx

Example 1: Differentiate f(x) =5.

Solution:

Example 2: Differentiate y = x’.

Solution:



Example 3: Differentiate y = it .

Solution:

. : 1
Example 4: Differentiate y = — -
X

Solution:



Properties of Differentiation

1. di(k f(x))=k f'(x) (kis a constant)
X

2. di (@) *g(0) = f'(x) £ g'(x)
X

Example 5: Differentiate f(x) = 4x3 +5sinx.

Solution:



Example 6: Differentiate y = 6x> +4x? —2x—2cosx+5.

Solution:

3

Example 7: Differentiate f(¢) = 3¢’ + Ji + 34 - -7.
t

Solution:



x2 —2\/;

X

Example 8: Differentiate y =

a+b a b .
= —+ —, we first rewrite
c c c

Solution: Using the following property of fractions that

the function as
B x2 —2\/; B x2 2x!?

Y —
X X x

NP NP V5 BN WS 1)

Differentiating y = x — 2x712 we obtain

Y 2(- %)X—I/Z—l

dx
d
By
dx

1
L




Example 9: Find the equation of the line tangent to the graph of f(#) =sin¢+ 2¢ at the
point (7z,27).

Solution: To find the equation of any line, including a tangent line, we need a point (this is
given to be (7, 27) ) and the slope. Recall that the derivative at a point gives the slope of

the tangent line at that point. To find a formula for calculating the slope, we calculate the
derivative of the function which is given by

f'(t)=cost+2

Then,
Slope of Tangent line

at the point (7,27) =m= f'(r)=cos(n)+2=—-1+2=1
t=rm

Then, using the slope intercept equation of a line (in terms of #) given by

y=mt+b

(Continued on next page)
we use the slope of the tangent line we just found m = 1 to find the equation of the tangent
line as follows:

yv=Dt+b (Substitute the slope m =1)
y=t+b (Simplify)
2r=rw+b (Use the point (7, 27) with t = 7 when y = 271)

b=2r-r=nrx (Solve for b)

Hence, substituting the slope m = 1 and b= 7 into y = mt + b gives the tangent line
equation:

y=t+rx




Graph the function and its tangent line with your calculator

Example 10: Find the point)s on the graph of y = 8x—2¢" that has a horizontal tangent
line.

Solution: On this problem, a horizontal tangent line means that the slope of the tangent line
is 0. Since the derivative gives a formula for the slope of the tangent line, we can find the
point that gives a tangent line slope of 0 by taking the derivative of the function, setting it
equal to 0, and solving for x. The result of this calculation is as follows:

B g 2070
dx
8—2e¢" =0
—2e¢" =-8 (Subtract 8 from both sides)
e* =4 (Divide both sides by - 2)

Ine* =1n(4) (Take In of both sides)

x Ine=1n(4) (Use In property Inu* = kIn u)
x (1) =In(4) (Recalllne=1)
x =1In(4)

To complete the problem, we must find the y-coordinate of the point by substituting
x = In(4) back into the original function y = 8x —2¢". Keeping in mind the inverse

property ™ =y, this is done as follows:
y =81n(4)— 2¢™® = 8In(4)— (2)(4) = 81n(4) -8

Thus, the coordinates of the point that have a horizontal tangent line is

(In(4),81n(4) — 8)




Average Velocity

Suppose the position of a moving object starting from rest is given by the position function
s(t) = 5¢2 feet where ¢ is the time given in seconds.

t s(f) = 5¢2

We define the average velocity on the time interval from ¢ = a to ¢ = b as follows:

Formula For Average Velocity

Average Velocity
on the timeinterval  Changein Distance _ s(b) —s(a)
[a,b] Change in Time b—a

t=atot=>b




Example 11: Find the average velocity for the time intervals [1, 3] and [3, 4] for an
object if the position starting from rest is given by s(¢) = 562 .

Solution:

10



11

Suppose we now desire to find the velocity of the object precisely when ¢ = 1 second for
the position function s(¢) = 5¢2.

A method for approximating would involve finding average velocities on an interval that is
“close” to ¢ = 1.

Example 12: Find the average velocity for the time intervals [1, 1.01] and [1, 1.001] for
an object if the position starting from rest is given by s(¢) = 502

Solution: To assist in the calculations, we find the position function s(¢) = 5¢% at the
following times.

s(h=50)%=51)=5
s(1.01) = 5(1.01)% = 5(1.0201) = 5.1005
5(1.001) = 5(1.001)% = 5(1.002001) = 5.010005

Then, using the average velocity formula
Average velocity on the

_ Change in distance (height)  s(b) —s(a)
Change in Time b—a

time interval [a,b]
t=atot=>

we obtain

Average velocity on the

time interval[1,1.01] = s1.0D) = s() = 5.1005=5 = 0.1005 =10.05 ft/sec
1.01-1 0.01 0.01
t=1to t=1.01

Average velocity on the
time interval[1,1.001] =
t=1to t=1.001

5(1.001) = s(1) _ 5.010005-5 _ 0.0100¢5
1.001—1 0001  0.001

=10.005 ft/sed
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In general, for an object moving from time ¢ =¢ totime ¢, =¢+#,

Average Velocity
on the time interval =
[t,t+h]

To get the instantaneous velocity at ¢, =¢, we let ~—0 which gives the following
definition.

Instantaneous Velocity and Instantaneous Rate of Change

Given a position function s(¢), the instantaneous velocity v(¢) is given by the derivative of
the position function. That is,

s(t+h)—s(t)

w(t) = s'(¢) = lim
h—0 h

In general, if we are given a function y = f(x),

Average Rate

_fla+h)—-f(a)

of changeon = P

[a,a+ h]

Instantaneous Rate ,
of changeat = f'(a)= ;l,im Sfla+ 2—f(a) ‘
0

—>

t=a

Example 13: Find the instantaneous velocity for the position function s(z) = 502 att=1.

Solution:
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Example 14: The position function representing the height of a freely falling object is
given by s(¢) = —16:% + vot + 5¢, where v is the initial velocity of the object and s, is

the initial height of the ball at time # = 0. Here the height s is in feet and the time # is in
seconds. Suppose someone throws a baseball from 6 feet off the ground with a initial
velocity of 100 ft/s.

a. Determine the position and velocity functions for the ball.

b. Find the average velocity for the time intervals [4, 4.1], [4, 4.01], and [4, 4.0001].

c. Find the instantaneous velocity when # = 4 and 7 = 5 seconds.

d. Find the time required for the ball to reach ground level.

e. Find the velocity of the coin at impact.

Solution part a: Since the ball starts 6 ft off the ground, the initial height is s, = 6. The

initial velocity is v, =100. Substituting into the equation s(t) = —161% + Vot +5( gives
the position equation

s(f) = =16t +100¢ + 6

To get the velocity equation, we take the derivative of the position equation s(¢). This
gives

w(t) = s'(£) = =32t + 100

Solution part b: Recall that given a time interval [a,b], if s represents the height of the
ball (the position) after time ¢, then

Average velocity on the

timeinterval[a,b] = Change in distance (height) _ s(b) —s(a) '

Ch in Ti b—
f—dtof—b ange in Time a

To find the average velocities for the given intervals, we will use the following calculations:

s(4) = —16(4)> +100(4) + 6 = 256+ 400+ 6 = 150 ft .

s(4.1) = —16(4.1)> +100(4.1) + 6 = —268.96 + 410 + 6 = 147.04 ft

s(4.01) = —16(4.01)> +100(4.01) + 6 = —257.2816 + 401+ 6 = 149.7184 ft

5(4.0001) = —16(4.0001)> +100(4.0001) + 6 = —256.01280016 + 400.01 + 6 = 149.99719984 ft

Hence,

Continued on the next page
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Average velocity on the

timeinterval[4,4.1] = s@-D=s(@) 147047150 =296 | —29.6 ft/sec
4.1-4 0.1 0.1
t=4to t=4.1
Averagevelocityonthe 1 0 1497184150 02816
time interval[4,4.01] = G0N =s®) 1497184150 _ =0.2816 _| ¢ ¢ py/ec

4.01-4 0.01 0.01
t=4t0 t=4.01

Average velocity on the

5(4.0001) —s(4) 149.99719984-150  —0.00280016 |
4.0001-4 0.0001 0.0001

time interval [4,4.0001] = = —28.0016 ft/sec

t=4to t=4.0001

Note that the negative average velocities indicate that the ball is falling down instead of going up.
Solution part c: The average velocities found in part b indicate the instantaneous
velocity at the specific time ¢ = 4 should be close to -28 ft/sec. From part a, we found the
equation for the instantaneous velocity at a particular time 7 to be

v(t) = s'(t) = =32t + 100

Thus, at t =4 we have

Instantaneous Velocity
=v(4) =-32(4)+100=-128+100 = —28 ft/sec

attimet =4

We can easily use this same equation to find the velocity at # = 5 seconds.

Instantaneous Velocity
- =v(5) =-32(5)+100 =-160+100 = —68 ft/sec
attimes =35

Solution part d: When the ball reaches ground level, its height s = 0. Thus, the find the
time when the ball reaches ground level, we set the position equation

s()=—=16t +100¢ + 6 = 0

and solve for z. Since this quadratic equation is not easily factorable, we use the quadratic
formula to find its approximate solution.

Continued on the next page
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Recall that the quadratic formula says that the solution to the quadratic equation is given

by at’> +bt+c=0 is given by

—b+b? —4ac

2a

1=

For s(t) = —16:> +100t+6 =0, setting @ =-16, b = 100, and ¢ = 6 we obtain

~ 100 /(100)% — 4(=16)(6)
- 2(~16)

_ —100% /10000 + 384

- -32

—-100+ /10384

B ~32

, —100£101.9
Y

. o ~100-101.9 —100+101.9
T3 7 -3

o T20L9 19
T o-32 0 =32

t~63, (=005

Thus, the ball hits the ground in approximately| 6.3 seconds.

Solution part e: From part d, we found out the ball hits the ground after # = 6.3 seconds.
To find the velocity when the ball impacts the ground, we substitute # = 6.3 into the
velocity equation we found in part a v(t) = —32¢+ 100 . Thus,

Velocity when ball
. =v(6.3) =-32(6.3)+100 = —101.6 ft/sec
hits ground (¢ = 6.3)




