Basic Differential Rules and Rates of Change

Basic Derivative Rules

1. The Constant Rule: $\frac{d}{d x}[c]=$
2. The Power Rule: $\frac{d}{d x}\left[x^{n}\right]=$
3. The Constant Multiple Rule: $\frac{d}{d x}[c f(x)]=$
4. The Sum Rule: $\frac{d}{d x}[f(x)+g(x)]=$
5. The Difference Rule: $\frac{d}{d x}[f(x)-g(x)]=$
6. The Sinusoidal Functions: $\frac{d}{d x}[\sin x]=$

$$
\frac{d}{d x}[\cos x]=
$$

7. The Exponential and Natural Log Functions: $\frac{d}{d x}\left[e^{x}\right]=$

$$
\frac{d}{d x}[\ln x]=
$$

1. Let $f(x)=5$. Find $f^{\prime}(x)$
2. Let $y=x^{9}$. Find y^{\prime}
3. Let $y=\sqrt[3]{t}$. Find $\frac{d y}{d t}$
4. $\frac{d}{d x}\left[\frac{1}{x^{3}}\right]=$
5. Let $f(x)=4 x^{3}+5 \sin x . f^{\prime}(x)=$
6. Let $y=6 x^{3}+4 x^{2}-2 x-2 \cos x+5$. Find $\frac{d y}{d x}$
7. $\frac{d}{d t}\left[3 e^{t}+\sqrt{t}+\frac{5}{t^{4}}-\frac{3}{\sqrt[3]{t^{2}}}-\pi\right]=$
8. Let $y=\frac{x^{2}-2 \sqrt{x}}{x}$. Find $\frac{d y}{d x}$
9. Find the equation of the line tangent to the graph of $f(t)=\sin t+2 t$ at the point $(\pi, 2 \pi)$
10. Find the point(s) on the graph of $y=8 x-2 e^{x}$ that has a horizontal tangent line.

A common use for rate of change to describe the motion of an object moving in a straight line. Movement to the right on a horizontal line or up in a vertical line is considered \qquad direction, and movement to the left on horizontal line or down on a vertical line is considered is the \qquad direction. The function $s(t)$ that gives the position (relative to the origin) of an object as a function of time t. is called a \qquad

Rates of Change of a Position

1. Average Velocity:
2. (Instantaneous) Velocity: $v(t)=$
3. Acceleration: $a(t)=$
4. The position of an object (starting from rest) is given by $5 t^{2}$, where the position is measured in cm and the time is measured in minutes.
(a) Find the average velocity for the time $t=1$ to $t=3$
(b) Find the velocity at time $t=2$
(c) Is the acceleration constant? What is the acceleration?
5. A common use is in modeling projectile motion: $s(t)=\frac{1}{2} g t^{2}+v_{0} t+s_{0}$, where g is the gravitational acceleration (on Earth -32 feet per second per second, or -9.8 meters per second per second).

A diver jumps from a platform diving board that is 32 feet above the water. The initial velocity $\left(v_{0}=16\right)$ feet per second
(a) $s(t)=$
(b) When does the diver hit the water?
(c) What was the average velocity over the time from $t=1$ to $t=2$?
(d) What is the diver's velocity at impact?

