Basic Differential Rules and Rates of Change

Basic Derivative Rules	
1. The Constant Rule: $\frac{d}{dx}[c] =$	
2. The Power Rule: $\frac{d}{dx}[x^n] =$	
3. The Constant Multiple Rule: $\frac{d}{dx}[cf(x)] =$	
4. The Sum Rule: $\frac{d}{dx}[f(x) + g(x)] =$	
5. The Difference Rule: $\frac{d}{dx}[f(x) - g(x)] =$	
6. The Sinusoidal Functions: $\frac{d}{dx}[\sin x] =$	$\frac{d}{dx}[\cos x] =$
7. The Exponential and Natural Log Functions: $\frac{d}{dx}[e^x] =$	$\frac{d}{dx}[\ln x] =$

1. Let f(x) = 5. Find f'(x)

2. Let $y = x^9$. Find y'

3. Let $y = \sqrt[3]{t}$. Find $\frac{dy}{dt}$

4.
$$\frac{d}{dx}\left[\frac{1}{x^3}\right] =$$

5. Let
$$f(x) = 4x^3 + 5\sin x$$
. $f'(x) =$

6. Let
$$y = 6x^3 + 4x^2 - 2x - 2\cos x + 5$$
. Find $\frac{dy}{dx}$

7.
$$\frac{d}{dt} \left[3e^t + \sqrt{t} + \frac{5}{t^4} - \frac{3}{\sqrt[3]{t^2}} - \pi \right] =$$

8. Let
$$y = \frac{x^2 - 2\sqrt{x}}{x}$$
. Find $\frac{dy}{dx}$

9. Find the equation of the line tangent to the graph of $f(t) = \sin t + 2t$ at the point $(\pi, 2\pi)$

10. Find the point(s) on the graph of $y = 8x - 2e^x$ that has a horizontal tangent line.

A common use for rate of change to describe the motion of an object moving in a straight line. Movement

to the right on a horizontal line or up in a vertical line is considered ______direction, and

movement to the left on horizontal line or down on a vertical line is considered is the ______ direction. The function s(t) that gives the position (relative to the origin) of

an object as a function of time t. is called a _____

Rates of Change of a Position

- 1. Average Velocity:
- 2. (Instantaneous) Velocity: v(t) =
- 3. Acceleration: a(t) =
- 11. The position of an object (starting from rest) is given by $5t^2$, where the position is measured in cm and the time is measured in minutes.
 - (a) Find the average velocity for the time t = 1 to t = 3

(b) Find the velocity at time t = 2

(c) Is the acceleration constant? What is the acceleration ?

12. A common use is in modeling projectile motion: $s(t) = \frac{1}{2}gt^2 + v_0t + s_0$, where g is the gravitational acceleration (on Earth -32 feet per second per second, or -9.8 meters per second per second).

A diver jumps from a platform diving board that is 32 feet above the water. The initial velocity ($v_0 = 16$) feet per second

(a) s(t) =

(b) When does the diver hit the water?

(c) What was the average velocity over the time from t = 1 to t = 2?

(d) What is the diver's velocity at impact?