1.5 Notes and Examples

Name:

Infinite Limits

We conclude Chapter 1 with a distinction among the limits that show unbounded behavior. You may have heard me describe this a Type II limit, where a non-zero number is divided by zero. You have seen already that this causes vertical asymptotes.

Strategy: How to Find $\lim_{x \to a} f(x)$ Try to evaluate f(a) (i.e., replace x with a in the expression). You will get one of 3 things: Type I. You got a number, c: You're done! Type II. You got $\frac{not \ 0}{0}$: a **vertical asymptote**: one of three possible conclusions: 1. 2. 3. Type III. You got $\frac{0}{0}$ - See Section 1.3: Resort to Algebra tricks! (Factor and reduce, rationalize with a conjugate, trig identities, theorems like $\lim_{x \to 0} \frac{\sin x}{x} = 1$, $\lim_{x \to 0} \frac{1 - \cos x}{x} = 0$, etc.

N.B.: Just because you see $\lim f(x) = \infty$, or $\lim f(x) = -\infty$ it **does not** mean that the limit exists! On the contrary, it tells you **how** the limit fails to exist.

1. Let $f(x) = \frac{3}{x-2}$.

x	1.5	1.9	1.99	1.999	2	2.001	2.01	2.1	2.5
f(x)									

(a) f(2) =

(b) $\lim_{x \to 2^{-}} f(x) =$ Meaning the f(x) as x approaches 2 from the negative side.

(c) $\lim_{x\to 2^+} f(x) =$ _____ Meaning the f(x) _____ as x approaches 2 from the negative side.

Function with vertical asymptotes

Properties of Infinite Limits:

If L and c are real numbers (i.e. $\in \mathbb{R}$), and f and g are functions where $\lim_{x\to c} f(x) = \infty$ and $\lim_{x\to c} g(x) = L$, then

- 1. Sum Rule: $\lim_{x \to c} (f(x) + g(x)) =$
- 2. Difference Rule: $\lim_{x \to c} (f(x) g(x)) =$
- 3. Product Rule (if L > 0): $\lim_{x \to c} (f(x) \cdot g(x)) =$
- 4. Product Rule (if L < 0): $\lim_{x \to c} (f(x) \cdot g(x)) =$
- 5. Quotient Rule (if $L \neq 0$): $\lim_{x \to c} \left(\frac{f(x)}{g(x)} \right) =$

3. (a) $\lim_{x \to 0} 1 + \frac{1}{x^2} =$

(b)
$$\lim_{x \to 1^{-}} \frac{x^2 + 1}{\cot \pi x} =$$

(c)
$$\lim_{x \to 0^+} 3 \cot x =$$

(d)
$$\lim_{x \to 0^-} \left(x^2 + \frac{1}{x} \right) =$$

What about horizontal asymptotes?

- 4. (a) $\lim_{x \to \infty} f(x) =$
 - (b) $\lim_{x \to -\infty} f(x) =$
 - (c) $\lim_{x \to -2} f(x) =$
 - (d) $\lim_{x \to 5} f(x) =$

5. (a) $\lim_{x \to \infty} f(x) =$

(b)
$$\lim_{x \to -\infty} f(x) =$$

- (c) $\lim_{x \to 5} f(x) =$
- St. Francis High School

- 6. If $\lim_{x\to 3^-} g(x) = +\infty$ and $\lim_{x\to 3^+} g(x) = -\infty$, does this imply a vertical or horizontal asymptote? What else can you conclude?
- 7. If $\lim_{x \to -1^-} h(x) = 4$ and $\lim_{x \to -1^+} h(x) = -\infty$, does this imply a vertical or horizontal asymptote? What else can you conclude?
- 8. If $\lim_{t\to\infty} v(t) = 2$, does this imply a vertical or horizontal asymptote?
- 9. There are 11 limit statements you can make from the graph of f below. Can you find them all?

