Finding Limits Analytically

Some Basic Limits:

If L, M, c, and k are real numbers (i.e. $\in \mathbb{R}$), with $\lim _{x \rightarrow c} f(x)=L$ and $\lim _{x \rightarrow c} g(x)=M$

1. $\lim _{x \rightarrow c} k=$
2. $\lim _{x \rightarrow c} x=$
3. $\lim _{x \rightarrow c} x^{k}=$
4. Examples: Find the following limits
(a) $\lim _{x \rightarrow 2} 5=$
(b) $\lim _{x \rightarrow-7} x=$
(c) $\lim _{x \rightarrow 3} x^{2}=$

Properties of Limits:

If L, M, c, and k are real numbers (i.e. $\in \mathbb{R}$), with $\lim _{x \rightarrow c} f(x)=L$ and $\lim _{x \rightarrow c} g(x)=M$

1. Sum Rule: $\lim _{x \rightarrow c}(f(x)+g(x))=$
2. Difference Rule: $\lim _{x \rightarrow c}(f(x)-g(x))=$
3. Product Rule: $\lim _{x \rightarrow c}(f(x) \cdot g(x))=$
4. Quotient Rule (if $M \neq 0$): $\lim _{x \rightarrow c}\left(\frac{f(x)}{g(x)}\right)=$
5. Constant Multiple Rule: $\lim _{x \rightarrow c}(k \cdot f(x))=$
6. Power Rule (if $L^{a / b} \in \mathbb{R}$, and a, b are integers (i.e. $\in \mathbb{Z}$): $\lim _{x \rightarrow c}\left(f(x)^{a / b}\right)=$
7. Composite Function Rule: $\lim _{x \rightarrow c}(f(x) \circ g(x))=\lim _{x \rightarrow c} f(g(x))=f\left(\lim _{x \rightarrow c} g(x)\right)=$
8. Examples: Given that $\lim _{x \rightarrow a} f(x)=2$ and $\lim _{x \rightarrow a} g(x)=3$, find the following limits.
(a) $\lim _{x \rightarrow a} 5 g(x)=$
(b) $\lim _{x \rightarrow a} \frac{6+f(x)}{g(x)}=$
(c) $\lim _{x \rightarrow a}[g(x)]^{3}=$
(d) $\lim _{x \rightarrow a} f(g(x))=$
(e) $\lim _{x \rightarrow a} g(x)^{3 / 2}=$
http://webspace.ship.edu/msrenault/GeoGebraCalculus/limit_laws.html
9. Find the following limits
(a) $\lim _{x \rightarrow 0} \sqrt{x^{2}+4}=$
(b) $\lim _{x \rightarrow 3} \sqrt[3]{2 x^{2}-10}=$
(c) $\lim _{x \rightarrow \pi} \cos (x)=$
(d) $\lim _{x \rightarrow \frac{\pi}{4}} \sin ^{2} x=$

Squeeze Theorem: If $h(x) \leq f(x) \leq g(x)$ for all x in an open interval that contains c, and :

$$
\lim _{x \rightarrow c} h(x)=\lim _{x \rightarrow c} g(x)=L \text { then } \lim _{x \rightarrow c} f(x)=
$$

\qquad
Theorem: $\lim _{x \rightarrow 0} \frac{\sin x}{x}=$ \qquad

Theorem: $\lim _{x \rightarrow 0} \frac{1-\cos x}{x}=$ \qquad

Strategy

Start with Direct Substitution, to determine if the limit is:
Type I. you get a number, you are done.
Type II. your get a number divided by zero, either $\pm \infty$ or DNE (more of this next time)
Type III. you get $\frac{0}{0}$ or $\pm \frac{\infty}{\infty}$ (indeterminate form), Try:
(a) Factor, divide out, or separate into fractions
(b) Multiply or divide top and bottom by the highest power of x
(c) Rationalize (multiply top and bottom by the conjugate)
(d) Try to make it in the form of $\lim _{x \rightarrow 0} \frac{\sin x}{x}=1$ or $\lim _{x \rightarrow 0} \frac{1-\cos x}{x}=0$
4. Examples of Type I
(a) $\lim _{x \rightarrow 1} \frac{x^{2}+x+2}{x+1}=$
(b) $\lim _{x \rightarrow 0} \tan x=$
(c) $\lim _{x \rightarrow \pi} x \cos x=$
5. Examples of Type III
(a) $\lim _{x \rightarrow-3} \frac{x^{2}+x-6}{x+3}=$
(b) $\lim _{x \rightarrow 0} \frac{\sqrt{x+1}-1}{x}=$
(c) $\lim _{x \rightarrow 0} \frac{\tan x}{x}=$

More Challenging Examples

Graph of f

Graph of g
6. The graphs of f and g are shown above.
(a) $\lim _{x \rightarrow 1} f(g(x))=$
(b) $\lim _{x \rightarrow 0} f(f(x))=$
(c) If $\lim _{x \rightarrow a} g(x)=1$, find all possible values of a
7. $\lim _{x \rightarrow 0} \frac{\sin (5 x)}{4 x}$
10. $\lim _{x \rightarrow \frac{\pi}{4}} \frac{1-\tan x}{\sin x-\cos x}$
8. $\lim _{x \rightarrow 0} \frac{2 x+\sin (x)}{x}$

