1.2 Notes and Examples

Finding Limits Graphically and Numerically

1. Consider the function $\frac{x^2 - 3x + 2}{x - 1}$. To sketch the graph, we need to know what is going on at x = 1.

(a) Using a Table: Using your TI: Press [TBLSET] (aka 2nd [WINDOW]) to make

Indent: Auto Ask Depend: Auto Ask and fill in the following

	x approaches 1 from the left.									
x	0.75	0.9	0.99	0.999	1	1.001	1.01	1.1	1.25	
f(x)										

- (b) Now type the function in your TI as Y_1 , Use [ZOOM] 4. and [TRACE] to see what is happening around x = 1.
- (c) Write the Limit expression:
- (d) We read this as "The _____ of f(x) as x approaches _____ is ____"
- 2. Estimating a Limit Numerically:

$$\lim_{x \to 0} \frac{x}{\sqrt{x+1} - 1}$$

x	-0.1	-0.01	-0.001	-0.0001	0	0.0001	0.001	0.01	0.1
$\int f(x)$									

3. Estimating a Limit Numerically:

$$\lim_{x \to 3} \frac{(x^2 - 9)(x + 1)}{x - 3}$$

x	2.9	2.99	2.999	2.9999	3	3.0001	3.001	3.01	3.1
f(x)									

Graph of f

In general, even if $f(c) \neq L$, if f(x) becomes arbitrarily close to a single number L as x approaches c from either side, we say that the limit of f(x) as x approaches c is L. This limit is written:

- 4. One sided limits: Let $g(x) = \begin{cases} x^2 & \text{for } x < 1 \\ x+2 & \text{for } x > 1 \end{cases}$
 - (a) g(0) =
 - (b) g(4) =
 - (c) g(1) =
 - (d) $\lim_{x \to 1^{-}} g(x) =$
 - (e) $\lim_{x \to 1^+} g(x) =$
 - (f) $\lim_{x \to 1} g(x) =$
- 5. Finding a limit Graphically
 - (a) $\lim_{x \to -3} f(x) =$
 - (b) $\lim_{x \to -7^{-}} f(x) =$
 - (c) $\lim_{x \to -7^+} f(x) =$
 - (d) $\lim_{x \to -7} f(x) =$
 - (e) f(-6) =
 - (f) $\lim_{x \to -6} f(x) =$
 - (g) $\lim_{x \to 4} f(x) =$
 - (h) $\lim_{x \to 5} f(x) =$
 - (i) For what values of a is $\lim_{x \to a} f(x) = 1$?
- 6. Examples of 3 types of Limits that Fail to exist

(a)
$$\lim_{x \to 0} \sin\left(\frac{1}{x}\right) \text{ why?}$$

(b)
$$\lim_{x \to 2} \left(\frac{1}{|x-2|}\right) \text{ why?}$$

(c) If
$$f(x) = \begin{cases} -2, & \text{if } x \leq 3\\ 3, & \text{if } x > 3 \end{cases}$$
, the
$$\lim_{x \to 3} f(x) = D.N.E. \text{ why?}$$

-10

8 7 6

5 4

3