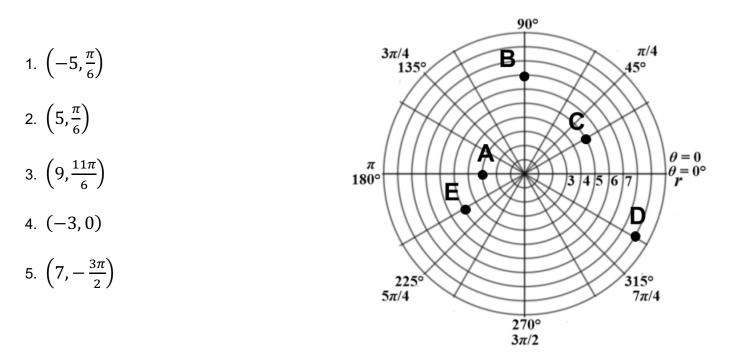

Name ______ Polar & Parametric Equations

Date

Polar Coordinates - Examples

Identify which point is graphed at the given polar coordinate: (radius, angle).



Rewrite the given polar coordinate using either by adding *n* circles, or a negative radius with the angle in the opposite direction.

f.
$$\left(1, \frac{2\pi}{3}\right)$$
 could be $\left(1, \frac{8\pi}{3}\right)$ or $\left(-1, -\frac{\pi}{3}\right)$.
g. $\left(4, \frac{7\pi}{6}\right)$ could be $\left(4, \frac{31\pi}{6}\right)$ or $\left(-4, \frac{\pi}{6}\right)$

Polar Coordinates - Exercises

Identify which point is graphed at the given polar coordinate.

Rewrite the given polar coordinate using either by adding *n circles, or a negative radius with the angle in the opposite direction*

$$6. \ \left(-2,\frac{3\pi}{4}\right).$$

7.
$$\left(4,\frac{5\pi}{6}\right)$$
.

8.
$$(6, \frac{7\pi}{4})$$
 if $n = -2$.

9. $\left(-3, \frac{11\pi}{6}\right)$ if n = 3.

Converting Between Rectangular and Polar Coordinates - Examples

Convert each polar coordinate to rectangular form.

a.
$$\left(4, \frac{2\pi}{3}\right) = \left(4\cos\frac{2\pi}{3}, 4\sin\frac{2\pi}{3}\right) = (-2, 2\sqrt{3})$$

b. $(2, \pi) = (2\cos\pi, 2\sin\pi) = (-2, 0)$
c. $(-2, 30^{\circ}) = (-2\cos 30^{\circ}, -2\sin 30^{\circ}) = (-\sqrt{3}, -1)$

Convert each rectangular coordinate to polar form. d. $(2\sqrt{3}, 2) = (\sqrt{12 + 4}, \arctan \frac{2}{2\sqrt{3}}) = (4, \frac{\pi}{6})$ e. $(-2\sqrt{3}, -2) = (4, \frac{7\pi}{6})$ f. $(-2, 2) = (2\sqrt{2}, \frac{3\pi}{4})$

Convert each rectangular equation to polar form.

g. y = 4. Substitute then solve for r: $r \sin(\theta) = 4$ becomes $r = \frac{4}{\sin \theta}$

h. $y = 2x^2$ Substitute: $r \sin \theta = 2r^2 \cos^2 \theta$ Solve for r: $r = \frac{\sin \theta}{\cos^2 \theta} = \tan \theta \sec \theta$

i. $x^2 = 36 - y^2$ Answer: because $x^2 + y^2 = r^2$, we have r = 6

Convert each polar equation to rectangular form.

j. $6rcos\theta = 12$ Answer: because $x = r \cos \theta$ this is the vertical line x = 2

k. $r = 2 + 3\cos\theta$ Answer: multiply both sides by r, substitute then solve for r: $x^2 + y^2 \pm \sqrt{x^2 + y^2} - 3x = 0$

I. $r = \frac{1}{2+\sin\theta}$ is the same as $4x^2 + 3y^2 + 2y - 1 = 0$

Converting Between Rectangular and Polar Coordinates - Homework

Convert each polar coordinate to rectangular form.

- 10. $\left(2, \frac{7\pi}{6}\right)$ 11. $\left(1, \frac{5\pi}{6}\right)$ 12. $\left(-2, \frac{\pi}{6}\right)$ 13. $\left(4, \frac{7\pi}{4}\right)$
- 14. $\left(3, \frac{3\pi}{2}\right)$

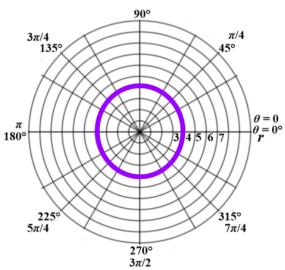
Convert each rectangular coordinate to polar form.

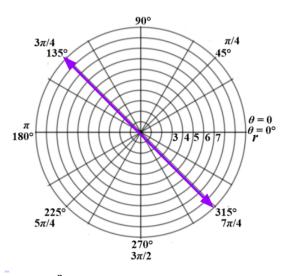
- 15. (4,4)
- 16. (-4,4)
- 17. (-4,-4)
- 18. (4, -4)
- **19**. (4, 4√3)

Convert each rectangular equation to polar form. 20. x = 2

- 21. $x = 3y^2$
- 22. $y^2 = 3x$
- 23. $4x^2 = 100 4y^2$

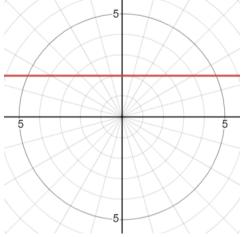
Convert each polar equation to rectangular form. 24. $8rsin\theta = 24$

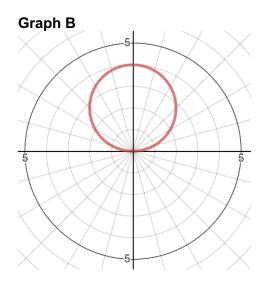

- 25. $r = 8cos\theta$
- 26. $r = 2 + 3sin\theta$

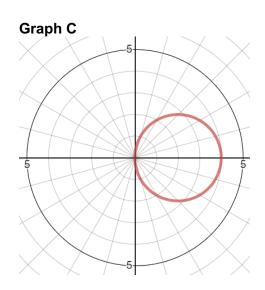

27.
$$r = \frac{1}{1 + \cos\theta}$$

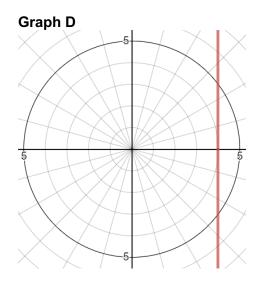
Polar Equations and Graphs - Examples

Write a polar equation for the given graph.

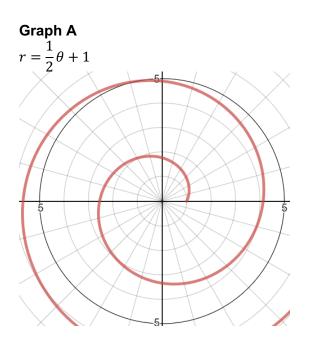


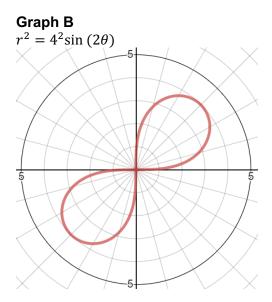


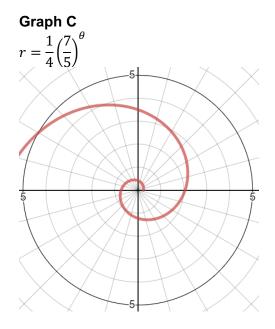

Find the graph of the given equation.

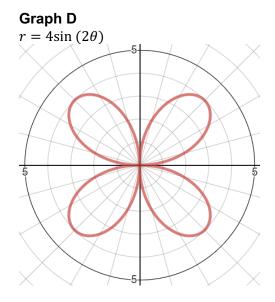

- c. $r = 4cos\theta$ is Graph C
- d. $r = 2csc\theta$ is Graph A
- e. $rcos\theta = 4$ is Graph D
- f. $\frac{1}{4}r = sin\theta$ is graph is B

Graph A

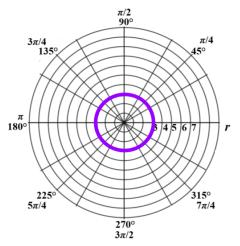


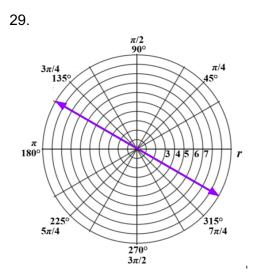

Use your calculator to answer the following questions:

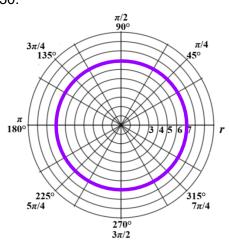

- g. What is the maximum radius of the 'petals' in the graph of $r = 3\cos(6\theta)$? Answer: 3
- h. How many 'petals' does the graph of $r = 3\cos(6\theta)$ have? Answer 12
- i. What is the maximum radius of the 'petals' in the graph of $r = 4\sin(5\theta)$? Answer: 4
- j. How many 'petals' does the graph of $r = 4\sin(5\theta)$ have? Answer: 5


Choose the graph/equation that matches the described function.

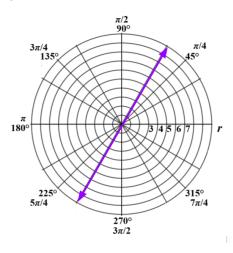
- k. Lemniscates Answer: Graph B
- I. Rose Curve Answer: Graph D
- m. Archimedean Spiral Answer: A
- n. Logarithmic Spiral Answer C



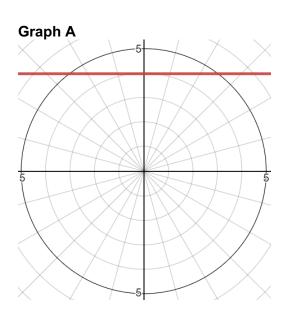


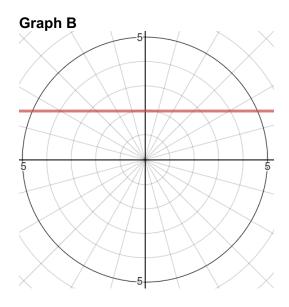

Polar Equations and Graphs - Homework

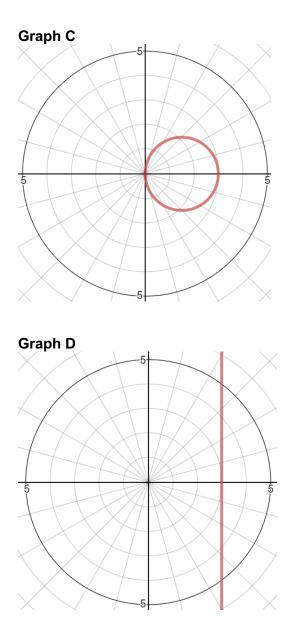
Write a polar equation for the given graph. 28.



30.

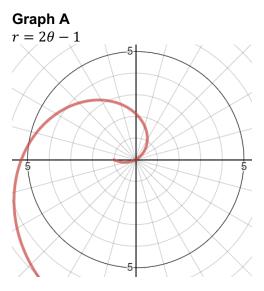


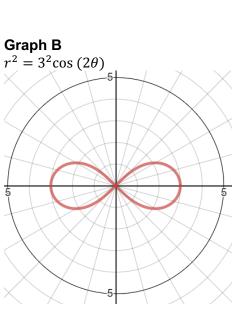

31.

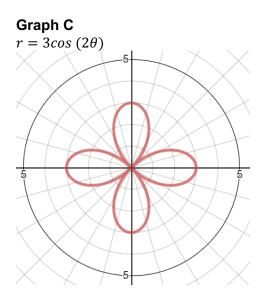


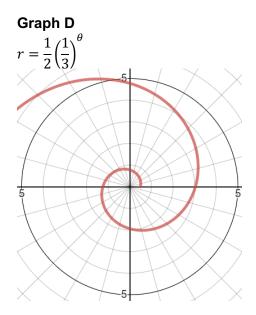
Find the graph of the given equation.

- 32. $r = 5csc\theta$
- 33. $r = 3sec\theta$
- 34. $rsin\theta = 2$
- 35. $\frac{1}{3}r = \cos\theta$

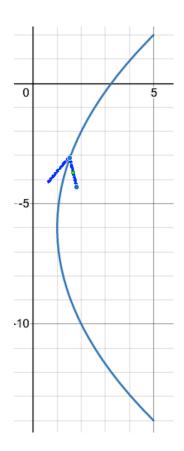



Use a calculator to answer the following questions:


- 36. What is the maximum radius of the 'petals' in the graph of $r = 7\cos(4\theta)$?
- 37. How many 'petals' does the graph of $r = 7\cos(4\theta)$ have?
- 38. What is the maximum radius of the 'petals' in the graph of $r = 2\sin(11\theta)$?
- 39. How many 'petals' does the graph of $r = 2\sin(11\theta)$ have?


Choose the graph/equation that matches the described function.

- 40. Lemniscates
- 41. Rose Curve
- 42. Archimedean Spiral
- 43. Logarithmic Spiral



Parametric Equations and Curves - Examples

Create a table with the rectangular coordinates for the given parametric equations and then sketch the directed graph.

a. $x = t^2 + 1$ y = 4t - 6

t x y <mark>5</mark> -2 <mark>-14</mark> 2 <mark>-10</mark> -1 1 <mark>-6</mark> 0 2 <mark>-2</mark> 1 2 <mark>5</mark> 2

Polar & Parametric Equations

Rewrite the given parametric equations in rectangular form and provide the domain/range.

b.

 $x = \sqrt{t} + 2$ $y = t^{2} - 3$ Solve for t with one equation, then substitute in the other: $t = (x - 2)^{2}$

$$t = (x - 2)^2$$

y = (x - 2)^4 - 3

So the Domain is all reals greater than 2, The Range is all reals greater than -3.

Create a pair of parametric equations for the given information.

c. A line with a slope of $\frac{1}{2}$ and passes through the point (4, 8). Answer: x = 4 + t, and $y = 8 + \frac{t}{2}$

- d. Rectangular equation is $y = \frac{x^2}{9} + \frac{y^2}{16} = 1$. Answer: $x = 3\cos t$ and $y = 4\sin t$
- e. Rectangular equation is $(x 1)^2 + (y + 2)^2 = 36$. Answer: $x = 1 + \cos t$, and $y = -2 + 6 \sin t$
- g. Rectangular equation is $y = x^2 + 3$. Answer: x = t, and $y = 3 + t^2$

<u>Parametric Equations and Curves</u> - Homework Create a table with the rectangular coordinates for the given parametric equations and then sketch the graph.

y = 2t + 5

t	x	у
-2		
-1		
0		
1		
2		

-		-		-	-

45. x = -2t + 5 $=\frac{t^3}{2}$ y =t x y -2 -1 0 1 2

_	_	_	_	_	_	_	_	_	_

Rewrite the given parametric equations in rectangular form and provide the domain/range.

46.	47.	48.
$x = 2\sqrt{t}$	$x = \frac{1}{3}t - 6$	$x = \frac{1}{4}t^2$
y = 2t - 2	5	$y = 4t^2$
	$y = t^3 + 6$	$y = 4\iota$

Create a pair of parametric equations for the given information. 49. A line with a slope of $\frac{1}{4}$ and passes through the point (6, 1).

50. A line with a slope of -1 and passes through the point (-4, 6).

- 51. Rectangular equation is $y = \frac{(x+2)^2}{25} + \frac{(y-2)^2}{9} = 1$.
- 52. Rectangular equation is $x^2 4x + y^2 + 6y = 23$.
- 53. Rectangular equation is $y = 3x^2 + 1$.