Congruent Triangles

Fr. Chris Thiel, OFMCap
St. Francis High School

Triangles

- 3 Sides
- 3 Angles
- If congruent, ALL 6 match!

CPCT

- Corresponding Parts of Congruent Triangles are Congruent

$$
\triangle A B C \cong \triangle X Y Z
$$

means:

$$
\begin{aligned}
& \angle A \cong \angle X \\
& \angle B \cong \angle Y \\
& \angle C \cong \angle Z \\
& \overline{A B} \cong \overline{X Y} \\
& \overline{B C} \cong \overline{Y Z} \\
& \overline{A C} \cong \overline{X Z}
\end{aligned}
$$

Euclid's Elements, Book i, Proposition 4
 Side-Angle-Side
 (SAS)

Book i, Proposition 8

Side-Side-Side (SSS) x

Copy $\angle A B C$ so that $\angle A B C \cong \angle X Y T$ and $\overline{B C} \cong \overline{Y T}$

$$
\begin{gathered}
\text { So } \triangle A B C \cong \triangle X Y T(\mathrm{SAS}) \\
\overline{B C} \cong \overline{Y T}(\mathrm{CPCT}) \cong \overline{Y Z} \text { (Trans) } \\
\overline{A C} \cong \overline{X T}(\mathrm{CPCT}) \cong \overline{X Z} \text { (Trans) } \\
T \text { must be } Z!
\end{gathered}
$$

Book I, Proposition 26
Angle-Side-Angle

Find T along $\overline{X Z}$ so that $\overline{X T} \cong \overline{A C}$
Then $\triangle A B C \cong \triangle X Y T$ (SAS)
$\angle X Y T \cong \angle A B C(\mathrm{CPCT}) \cong \angle X Y Z$ (Trans.)
So T is Z !

Book I, Proposition 26
 Angle-Angle-Side
 (AAS or SAA)

$$
\begin{gathered}
\angle B \cong \angle Y \\
\triangle A B C \cong \triangle X Y Z(\mathrm{ASA})
\end{gathered}
$$

So what about SSA (or ASS)?

Unless the angle is a right Angle!

But we call this
Hypotenuse-Leg (HL)

To Prove the HL Theorem, we first need to prove the Isosceles Triangle Theorem

Isosceles Triangle Theorem
Iff the base angles of an Isosceles Triangle is congruent, then the legs are congruent

Isosceles Triangle Theorem

Iff the base angles of an Isosceles Triangle is congruent, then the legs are congruent

ind X, so that $\overline{A X}$ bisects $\angle B A C$

$$
\begin{aligned}
& \angle B \cong \angle C \\
& \angle B A X \cong \angle C A X \\
& \overline{A X} \cong \overline{A X} \\
& \triangle B A X \cong \triangle C A X \\
& \overline{A B} \cong \overline{A C}
\end{aligned}
$$

Given $\overline{A B} \cong \overline{A C}$
Prove $\angle B \cong \angle C$

Find M, the midpoint of $\overline{B C}$

$$
\begin{aligned}
& \overline{A B} \cong \overline{A C} \\
& \overline{A M} \cong \overline{A M} \\
& \overline{B M} \cong \overline{C M} \\
& \triangle B A M \cong \triangle C A M \\
& \angle B \cong \angle C
\end{aligned}
$$

Proof of the
 Hypotenuse-Leg Theorem

(HL)

Given:
$\overline{A B} \cong \overline{X Y}$
$\overline{B C} \cong \overline{Y Z}$
$m \angle B=m \angle Y=90^{\circ}$
Prove:

$\triangle A B C \cong \triangle X Y Z$
Construct W along $\overline{Z Y}$ so that $\overline{B C} \cong \overline{Y W}$

$$
\begin{aligned}
& m \angle A B C=m \angle X Y W=90^{\circ} \\
& \overline{A B} \cong \overline{X Y} \\
& \triangle A B C \cong \triangle X Y W \\
& \overline{X W} \cong \overline{A C} \\
& \angle W \cong \angle Z \\
& m \angle X Y W=m \angle X Y Z=90^{\circ} \\
& \triangle A B C \cong \triangle X Y Z
\end{aligned}
$$

124 / Chapter 4

Can the two triangles be proved congruent? If so, what postulate can be used?
4.

5.

6.

7.

8.

9.

10. Explain how you would prove the following.

Given: $\frac{\overline{H Y} \cong \overline{L Y} ;}{\overline{W H} \| \overline{L F}}$
Prove: $\triangle W H Y \cong \triangle F L Y$
11. a. List two pairs of congruent corresponding sides and one pair of congruent
corresponding angles in $\triangle Y T R$ and ing sides and one pair of congruent
corresponding angles in $\triangle Y T R$ and $\triangle X T R$.
b. Notice that, in each triangle, you listed two sides and a nonincluded angle. Do you think that SSA is enough to guarantee
 that two triangles are congruent?

16. Supply the missing reasons.

Given: $\overline{A B} \| \overline{D C} ; \overline{A B} \cong \overline{D C}$
Prove: $\triangle A B C \cong \triangle C D A$

Proof:

Statements
Reasons

1. $\overline{A B} \cong \overline{D C}$
2. $\overline{A C} \cong \overline{A C}$
3. $\overline{A B} \| \overline{D C}$
4. $\angle B A C \cong \angle D C A$
5. $\triangle A B C \cong \triangle C D A$
6. ?
7. ?
8. ?
9. ?
10. ?
