Chapter 6: Inequalities in Geometry

Fr Chris Thiel St. Francis High School

Exterior Angle Theorem Euclid's Elements, Book 1 Proposition 16

The exterior angle of a triangle is greater than either remote interior angle

 $\angle 1 > \angle 2$ $\angle 1 > \angle 3$

States and

Within a triangle...

- Sides opposite big angles are bigger (Book 1, proposition 18)
- Sides opposite small angles are smaller
- Angles opposite big sides are bigger (Book 1, proposition 19)
- Angles opposite small sides are smaller

State Land

SAS Inequality Theorem

Book I, Proposition 24

States and

- □ Suppose the conclusion is not true
- Demonstrate that there is a contradiction
- Conclude the conclusion must be true

page 216, #8

If n^2 is an odd integer, then n is odd

1. Suppose n is not odd.

2. If n is not odd, then n is even so there must be an integer kwhere n = 2k

so
$$n^2 = (2k)^2$$

so $n^2 = 4k^2$

but 2 is a factor of 4k², so n² is even
but this contradicts our hypothesis that n is odd
3. Therefore n must be odd.

Now let's try this "indirect" way to prove the SSS Inequality Theorem

Given: $\overline{AC} > \overline{DF}$ Prove: $m \angle B > m \angle E$ B H C E H HF

- 1. Suppose $m \angle B \ge m \angle E$
- 2. Two cases:

Case 1: If $\angle B \cong \angle E$, $\triangle ABC \cong \triangle DEF$ and $\overline{AC} \cong \overline{DF}$, a contradiction Case 2: If $m \angle B < m \angle E$, AC < DF(by SAS Inequality Th), also a contradiction 3. Therefore $m \angle B > m \angle E$