Chapter 6: Inequalities in Geometry

Fr Chris Thiel
St. Francis High School

Exterior Angle Theorem

 Euclid's Elements, Book a Proposition 16The exterior angle of a triangle is greater than either remote interior angle

$$
\begin{aligned}
& \angle 1>\angle 2 \\
& \angle 1>\angle 3
\end{aligned}
$$

page 206 number 4

Within a triangle...

\square Sides opposite big angles are bigger (Book I, proposition 18)
\square Sides opposite small angles are smaller
\square Angles opposite big sides are bigger (Book I, proposition 19)

Angles opposite small sides are smaller

SAS Inequality Theorem

Book I, Proposition 24

SSS Inequality Theorem

Book I, Proposition 25

Indirect Proofs

214

Suppose the conclusion is not true
Demonstrate that there is a contradiction
Conclude the conclusion must be true

If n^{2} is an odd integer, then n is odd

1. Suppose n is not odd.
2. If n is not odd, then n is even
so there must be an integer k
where $n=2 k$

$$
\begin{aligned}
& \text { so } n^{2}=(2 k)^{2} \\
& \text { so } n^{2}=4 k^{2}
\end{aligned}
$$

but 2 is a factor of $4 k^{2}$, so n^{2} is even
but this contradicts our hypothesis that n is odd
3. Therefore n must be odd.

p. 216 \# 9

If $m \angle 1 \neq m \angle 2$, prove $a \forall b$

1. Suppose $a \| b$
2. Then $m \angle 1=m \angle 3$
$m \angle 3=m \angle 2$
$m \angle 1=m \angle 2$ a contradiction!
3. Hence $a \nVdash b$

Now let's try this "indirect" way to prove the SSS Inequality Theorem

Given: $\overline{A C}>\overline{D F}$
Prove: $m \angle B>m \angle E$

1. Suppose $m \angle B \ngtr m \angle E$
2. Two cases:

Case 1: If $\angle B \cong \angle E, \triangle A B C \cong \triangle D E F$ and $\overline{A C} \cong \overline{D F}$, a contradiction
Case 2: If $m \angle B<m \angle E, A C<D F$
(by SAS Inequality Th), also a contradiction
3. Therefore $m \angle B>m \angle E$

