

11. A triangle has sides that are 32, 48, and 61 units long and angles of 31°, 52°, and 97°. Sketch and label a diagram with the longest side on the top and the smallest angle at the right.

GIVEN: $\overline{RT} \perp \overline{TS}$

PROVE: RS > RT

Copyright © Houghton Mifflin Harcourt Publishing Company. All rights reserved.

20. Proof Write a paragraph proof.

•
14th Street, you cut across the park to the corner
of 13th Street and Sassafras Street. Explain why
taking this route is shorter than continuing to
walk to 13th Street and then to Sassafras Street.

he length

R

Practice C continued

17. 7 ft, 24 in.

Date __

12.

LESSON 5.5

16. 11 yd, 6 yd

Lesson 5.5 Use Inequalities in a Triangle, continued

5. shortest, \overline{KH} and \overline{KJ} ; longest, \overline{JH} **6.** shortest, \overline{AC} ; longest, \overline{CB} **7.** x > 4 **8.** $x > \frac{3}{2}$ **9.** 12 < *x* < 21 **10.** 5 < *x* < 11.5 **12.** \overline{CD} , \overline{BC} , \overline{BD} , \overline{AB} , \overline{AD} 11. **∖**52° 31 32 48 97° **13.** \overline{DE} , \overline{AE} , \overline{AD} , \overline{AB} , \overline{BD} , \overline{BC} , \overline{CD} **14.** 0 ft < x < 12 ft **15.** 4 in. < x < 14 in. **16.** 5 yd < x < 17 yd **17.** 60 in. < x < 108 in. **18.** 600 feet **19.** It is shorter to cut across the park because the sum of the lengths of the two sidewalks is greater than the length of the diagonal

across the park. **20.** $\overline{RT} \perp TS$, so $\triangle RTS$ is a right triangle. The largest angle in a right triangle is the right angle, so $m \angle RTS > m \angle RST$, so RS > RT. (If one angle of a triangle is larger than another angle, then the side opposite the larger angle is longer than the side opposite the smaller angle.)

1. smallest, $\angle A$ and $\angle B$; largest, $\angle C$ **2.** smallest, $\angle R$; largest, $\angle P$ **3.** smallest, $\angle H$; largest, $\angle G$ **4.** shortest, \overline{RS} ; longest, \overline{ST}

A74 Chapter Resource Book

í

ĺ