\qquad

LESSON
5.6

Practice C

For use with the lesson "Inequalities in Two Triangles and Indirect Proof"

Complete with <, >, or = . Explain.

1. $T P$? $A G$

2. $K D$ \qquad CP

3. $m \angle 1$ \qquad $m \angle 2$

4. $m \angle 1$? $m \angle 2$

5. $A T$? $B T$

6. $m \angle 1$ \qquad $m \angle 2$

In $\triangle D E F, D M$ is a median. Determine if each statement is always, sometimes, or never true.
7. If $m \angle 2>m \angle 1$, then $E D>F D$.
8. If $m \angle E>m \angle F$, then $\angle 1$ is obtuse.
9. If $\angle 2$ is acute, then $m \angle F>m \angle E$.
10. If $m \angle E<m \angle F$, then $m \angle 1<m \angle 2$.
11. If $m \angle 2=90^{\circ}$, then $E D>F D$.

12. If $m \angle D=90^{\circ}$, then $F D>E D$.
\qquad 5.6

Practice Continued

For use with the lesson "Inequalities in Two Triangles and Indirect Proof"

Use the Hinge Theorem or its converse and properties of triangles to write and solve an inequality to describe a restriction on the value of \boldsymbol{x}.

13.

14.

15. Sailing Two families are going sailing. Family A leaves the marina and sails 2.3 miles due north, then sails 3 miles due west. Family B leaves the marina and sails 2.3 miles due south, then sails 3 miles in a direction 1° north of due east. Which family is farther from the marina? Explain your reasoning.

In Exercises 16-18, write an indirect proof.

16. GIVEN: $\triangle J K L$ is a scalene triangle.

PROVE: No two angles of $\triangle J K L$ are congruent.
17. GIVEN: $\angle A B C \neq \angle D B C$

PROVE: $\overline{B C} \nsucceq \overline{A D}$

18. GIVEN: $\angle 1 \not \equiv \angle 5$

PROVE: $\angle 2$ and $\angle 3$ are not supplementary.
 Triangles and Indirect Proof

Practice Level C

1. $=$ 2. $<$ 3. $<$ 4. $>5 .>$ 6. $>$ 7. never
2. never 9. always 10. never 11. never
$\begin{array}{lll}\text { 12. sometimes } & \text { 13. } x>14 & \text { 14. } x>1\end{array}$

Lesson 5.6 Inequalities in Two Triangles and Indirect Proof, continued

15. Family A; The included angle for Family A is 90° and for Family B is 89°.
16. Sample answer: Suppose two angles of $\triangle J K L$ are congruent. Then, by the Converse of the Base Angles Theorem, the two sides opposite these angles are congruent. But this contradicts the given information that $\triangle J K L$ is a scalene triangle. So, if $\triangle J K L$ is a scalene triangle, then no two angles of $\triangle J K L$ are congruent. 17. Assume that $\overline{B C} \perp \overline{A D}$. Then, because $\overline{B C}$ and $\overline{A D}$ are \perp, they intersect to form 4 right angles. And since all right angles are congruent, $\angle A B C \cong \angle D B C$. But this contradicts the given information that $\angle A B C \not \equiv \angle D B C$. The assumption that $\overline{B C} \perp \overline{A D}$ is false. Therefore, $\overline{B C} \not \perp \overline{A D}$. 18. Assume that $\angle 2$ and $\angle 3$ are supplements. Then, by the Consecutive Interior Angles Converse, $\ell_{1} \| \ell_{2}$. So, if $\ell_{1} \| \ell_{2}$ then $\angle 1 \cong \angle 3$ by the Corresponding Angles Postulate. We know that $\angle 3 \cong \angle 5$ because they are vertical angles. Then by the Transitive Property of Congruence, $\angle 1 \cong \angle 5$. But this contradicts the fact that $\angle 1 \neq \angle 5$. The assumption that $\angle 2$ and $\angle 3$ are supplements is false. Therefore, $\angle 2$ and $\angle 3$ are not supplementary.
