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Has anyone not struggled with the mystery of the harmonic series 1 +
1
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+
1
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+ . . . , whose terms

diminish to zero but yet diverges?1

Jakob Bernoulli did, around 1700. Struck by the unexpected result, Jakob wrote in his Tractatus
(quoted in Bill Dunham’s Journey Through Genius):

As the finite encloses an infinite series
And in the unlimited limits appear,
So the soul of immensity dwells in minutia
And in the narrowest limits no limits inhere.
What joy to discern the minute in infinity!
The vast to perceive in the small, what divinity .

Old news. It’s not exactly news today, but the harmonic series diverges.

It was news once. The first known proof is attributed to Nicole Oresme (1323–1382), a Parisian
scholar and (later) Bishop of Lisieux, a good 300 years before calculus itself existed. Oresme’s proof
still appears in modern calculus texts: First group the terms like this—
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so that successive groups have 1, 1, 2, 4, 8, . . . terms, and so on forever. Since the sum of each
group is at least 1/2, the entire series must diverge.

A proof by grouping. In the 1500’s an even simpler and cleverer proof appeared, based on
grouping terms into threes: If H denotes the entire series, then
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Next, a little thought shows that the average of each triple of terms exceeds the middle term. Thus
the first group exceeds 1, the second 1/2, the third 1/3, etc. That is,
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In other words, H > 1 + H—not likely for any finite quantity H.
1From Wikipedia: The Harmonic Convergence was a loosely organized new age spiritual event which occurred on

August 16 and August 17, 1987, when groups of people gathered in various sacred sites and “mystical” places all
over the world to usher in a new era, a date based primarily on the Maya calendar, but also on interpretations of
European and Asian astrology.

The Harmonic Convergence was supposed to be a global awakening to love and unity through divine transformation.
It was initiated in 1987 by Jose Arguelles. According to his interpretation of Maya cosmology (an interpretation held
as completely unfounded by Mayanist scholarship), this date was the end of twenty-two cycles of 52 years each, or
1144 years in all. . . . According to Arguelles and others, the Harmonic Convergence also began the final 26-year
countdown to the end of the Mayan Long Count in 2012, which would be the “end of history” and the beginning of a
new 5,125-year cycle. All the evils of the modern world – war, materialism, violence, abuses, injustice, governmental
abusive power, etc. – would end with the birth of the 6th Sun and the 5th Earth on December 21, 2012.



Problem 1. Give another proof of divergence, this time based on grouping terms in pairs.

Integral tests. Yet another road to harmonic divergence involves the integral test. Here’s a
telegraphic version:
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dx = lim
t→∞

ln t = ∞.

That’s easy enough—but a little inelegantly “disproportionate” because improper integrals are in
some sense more sophisticated objects than infinite series.

A better use of integrals, arguably, is in estimating partial sums of the harmonic series. One useful
inequality “traps” the nth partial sum Hn (aka the nth harmonic number) between two integrals:∫ n+1

1

1
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Problem 2. Give a “picture proof” of the preceding inequality, and deduce the more interesting
inequality

ln(n + 1) < Hn < 1 + lnn,

What does the inequality say for n = 1010? For n = 10100? (Note: Can you make reasonable
estimates without any technology? For reference, see the footnote.2)

Exploring the harmonic numbers numerically

How do the harmonic numbers Hn =
n∑

k=1

1
k

behave numerically? Here are some Maple samples:

Some partial sums of the harmonic series

n grows linearly n grows exponentially

n Hn n Hn n Hn n Hn

10 2.92897 200 3.59774 2 1.50000 2048 8.20208
20 3.59774 300 3.99499 4 2.08333 4096 8.89510
30 3.99499 400 4.27854 8 2.71786 8192 9.58819
40 4.27854 500 4.49921 16 3.38073 16384 10.2813
50 4.49921 600 4.67987 32 4.05850 32768 10.9744
60 4.67987 700 4.83284 64 4.74389 65536 11.6676
70 4.83284 128 5.43315
80 4.96548 256 6.12434
90 5.08257 512 6.81652
100 5.18738 1024 7.50918

2ln(10) ≈ 2.303
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Problem 3. Compare the left and right blocks of the table above—pretend that you don’t already
know whether the series converges or diverges.

(a) What, if anything, does each block suggest to a naive reader?

(b) Mind the gaps H2n − Hn in the right-hand block. What well-known function behaves in a
similar way?

(c) Observe that H200−H100 =
1

101
+

1
102

+
1

103
+· · ·+ 1

200
. Interpret the sum as an approximating

sum for an appropriate integral to explain why the value is around ln 2. Does the sum under-
or overestimate the integral?

An integral formula. Euler gave the analytic formula Hn =
∫ 1

0

1− xn

1− x
dx for the harmonic

numbers.

Problem 3. Prove Euler’s integral formula.

The Euler–Mascheroni constant

Euler showed around 1735 that the sequence Hn− lnn converges. The limiting value is the Euler–
Mascheroni constant, γ ≈ 0.5772. Mascheroni calculated at least 19 correct digits around 1790; by
1812, Gauss and others knew at least 40 digits.

Problem 4. Show that the sequence Hn − lnn is (a) positive; and (b) decreasing, and therefore
converges to a limit.

Alternating harmonic series

It’s well known that the alternating series
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converges conditionally, but not absolutely, and that the limit is ln 2 ≈ 0.6931. This follows (with
x = 1) from the Mercator series identity

ln(1 + x) = x− x2
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which holds for −1 < x ≤ 1. (Mercator was a contemporary of Newton.)

Problem 5. Derive the Mercator series identity by integrating (from 0 to x) the finite geometric
series identity

1
1 + t

= 1− t + t2 − t3 + · · ·+ (−t)n−1 +
(−t)n

1 + t
.

Do any convergence issues arise for −1 < x ≤ 1?

3



Rearranging the alternating harmonic series. The alternating harmonic series (AHS) can
be rearranged to converge to any desired limit L. This is true abstractly, of course, for every
conditionally convergent series (remember why?).

Because of its special form, the AHS behaves well with respect to some natural and simple rear-
rangements. For example, we might take the first r positive summands, then the first s negative
summands, then the next r positive summands, then the next s negative summands, and so on.
With r = 1 and s = 2, we get the series
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With, say, Mathematica we can calculate partial sums numerically, and thus estimate the limit. In

this case the limiting value turns out to be
ln 2
2

.

It turns out that for any pair (r, s) of positive integers, the AHS rearranged in successive blocks of r

positive and s negative terms — we’ll call this rearrange(r, s) — has limit
ln(4r/s)

2
. The following

problems explore this fact.

Problem 6. Following is a sketch of how you might convince someone that rearrange(2, 3) has

limit
ln(8/3)

2
. Let

f(x) = x3 +
x9

3
− x4

2
− x8

4
− x12

6
+

x15

5
+

x21

7
− x16

8
− x20

10
− x24

12
+ · · ·

=
1
2

[
ln(1 + x3)− ln(1− x3) + ln(1− x4)

]
=

1
2

ln
(

(1 + x3)(1− x4)
1− x3

)
.

Now find lim
x→1−

f(x).

Problem 7. In order to find the general formula for the limit of rearrange(r, s), you want to
assign powers of x to the summands so that:

(i) If you separate the positive terms from the negative terms, the exponents for the positive terms
form an arithmetic sequence, and the exponents for the negative terms form an arithmetic
sequence.

(ii) The r positive summands and the s negative negative summands in the kth block all have
exponents that are both larger than the exponents of the terms in the k − 1st block and
smaller than the exponents of the terms in the k + 1st block.

Figure out how to do this.
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Solution to Problem 1. If the series converges to H, then

H =
(

1 +
1
2

)
+

(
1
3

+
1
4

)
+

(
1
5

+
1
6

)
+ · · · >

(
1
2

+
1
2

)
+

(
1
4

+
1
4

)
+

(
1
6

+
1
6

)
+ . . .

= 1 +
1
2

+
1
3

+ . . . = H.

Thus we’ve shown H > H, which is clearly absurd, so the series must diverge.

Solution to Problem 2. With n = 1010 we get 23.03 < Hn < 24.03. With n = 10100 we get
230.3 < Hn < 231.3. For reference, Maple gives H10100 ≈ 230.83.

Solution to Problem 3. Expand the numerator.

Solution to Problem 4. Part (a) is immediate by comparing an integral and an approximating
sum. For (b) the key inequality is

1
n + 1

≤ ln(n + 1)− ln(n) ≤ 1
n

,

which follows from a look the integral
∫ n+1

n

1
x

dx.

Solution to Problem 5. Integrating both sides gives

ln(1 + x) = x− x2

2
+

x3

3
− x4

4
+ · · · ± xn

n
+

∫ x

0

(−t)n

1 + t
dt.

The last summand tends to zero as n →∞. If 0 ≤ x ≤ 1 we have∣∣∣∣∫ x

0

(−t)n

1 + t
dt

∣∣∣∣ <

∫ x

0
tn dt <

∫ 1

0
tn dt =

1
n + 1

.

Solution to Problem 6. Write out the power series s1, s2, and s3 for ln(1+x3), ln(1−x3), and

ln(1 − x4), respectively. Then note that the power series
s1 − s2 + s3

2
boils down to the function

f(x) in Problem 6.

Solution to Problem 7. One approach is to mimic Problem 6: Write out the power series s1,
s2, and s3 for ln(1 + xa), ln(1− xa), and ln(1− xb), respectively, and then choose a and b so that
condition (ii) of Problem 7 holds. This turns out to happen when

a

b
=

s

2r
, or a = s and b = 2r.

The analogue of f(x) in Problem 6 then becomes

f(x) =
1
2

ln
(

(1 + xa)(1− xa)
1− xb

)
. =

1
2

ln
(

(1 + xs)(1− x2r)
1− xs

)
.

Taking the limit as x → 1− finishes the job.
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Another approach uses the formula
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= ln n + γ + E(n), where lim
n→∞

E(n) = 0.

Now we have
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= ln(2nr) + γ + E(2nr)− 1

2
( ln(nr) + γ + E(nr) + ln(ns) + γ + E(ns))

=
1
2

(
ln(4n2r2)− ln(nr)− ln(ns)

)
+ E(2nr)− 1

2
E(nr)− 1

2
E(ns)

=
1
2

ln(4r/s) + E(2nr)− 1
2
E(nr)− 1

2
E(ns).

As n approaches infinity, this approaches
ln(4r/s)

2
.
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