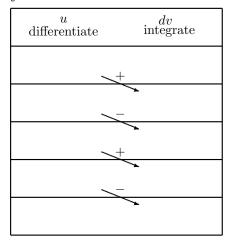
Ultra-Violet VooDoo (integration by parts) with a Table

The application of

$$udv = uv \int vdu$$

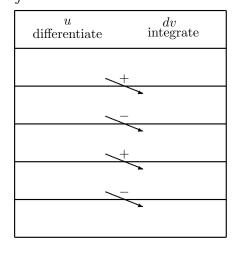

is to reduce an integral of the product of functions into a one involving a simpler integral. This process might require more than one step, so the tabular method is very popular organized approach to doing this "integration by parts"

1. Example: $\int 2x^2 \sin x \ dx$

u	dv
$2x^2$	$+$ $\sin x$
4x	$-\cos x$
4	$-\sin x$
0	$-\cos x$

Therefore $\int 2x^2 \sin x \, dx = -2x^2 \cos x + 4x \sin x + 4 \cos x + C$

 $2. \int 5x^3 \cos x \ dx$



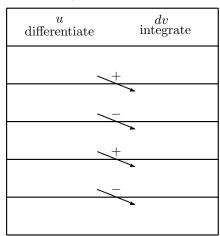
Page 2 of 4 2016

 $3. \int x \sin 3x \ dx$

$\begin{array}{c} u \\ \text{differentiate} \end{array}$	
+	
_	•
	_
	`
	`

4. $\int x5^x dx$

Page 3 of 4 2016


5.
$$\int e^x \sin x \ dx$$

5. $\int e^x \sin x \, dx$ Hint: This one looks like there is no progress, but note how algebra can come to the rescue:

$$\int a = bc - \int a$$
$$2 \int a = bc$$
$$\int a = \frac{1}{2}bc$$

$\begin{array}{c} u \\ \text{differentiate} \end{array}$	$\frac{dv}{\text{integrate}}$
+	
_	•
+	*
_	*
	*

6. $\int \arctan x \ dx$ Hint 1: Make $u = \arctan x$, so $du = \frac{1}{1+x^2} dx$ and let dv = dxHint 2: Maybe u substitution for $= 1 + x^2$ would be better than $uv - \int v du$

Page 4 of 4 2016

7.
$$\int x^2 e^x \ dx$$

$\frac{u}{\text{differentiate}}$	$\frac{dv}{\text{integrate}}$
+	
_	*
+	*
	*
	``

$$8. \int \frac{x^2}{e^{2x}} dx$$

$\begin{array}{c} u \\ \text{differentiate} \end{array}$	
+	
_	•
+	*
	,
	`

$$(3)\frac{1}{9}\left(\sin 3x - 3x\cos 3x\right) + C, \ (4)\frac{5^{x}}{\ln^{2}x}\left(x\ln 5 - 1\right) + C, \ (5)\frac{1}{2}e^{x}(\sin x - \cos x) + C$$