AP Calculus BC Quiz 1

- 1. (Inspired by 2007 form B, #5, which used steps of $\frac{1}{2}$ on a No Calculator question-feel free to use a calculator today) Consider the differential equation $\frac{dy}{dx} = 2x + 3y 1$
 - (a) (2 points) Find $\frac{d^2y}{dx^2}$ in terms of x and y

$$\frac{d^2y}{dx^2} = 2 + 3\frac{dy}{dx} - 0 = 2 + 3(2x + 3y - 1) = 6x + 9y - 1$$

(b) (2 points) Let y = f(x) be a particular solution to the differential equation with the initial condition f(0) = -2. Use Euler's method, starting at x = 0 with a step size of 0.25, to approximate f(1). Show the work that leads to your answer.

step	x	y	Δx	$\Delta y \approx dy = f'(x, y) * dx$	New $x = x + dx$	New $y = y + dy$
0	0	-2	.25	[2(0) + 3(-2) - 1] * .25 = -1.75	0 + .25 = .25	-2 - 1.75 = -3.75
1	.25	-3.75	.25	[2(.25) + 3(-3.75) - 1] * .25 = -2.9375	.25 + .25 = .5	-3.75 - 2.62625 = -6.6875
2	.5	-6.6875	.25	[2(.5) + 3(-6.6875) - 1] * .25 = -5.015625	.5 + .25 = .75	-6.6875 - = -11.703125
3	.75	-11.703125	.25	[2(.75) + 3(-11.703125) - 1] * .25 = -8.65234375	.75 + .25 = 1	-11.703125 - 8.65234375 = -20.35546875
4	1	-20.35546875				

 $f(1) \approx -20.35546875$

(c) (1 point) Explain why you think part (b) is either an underestimate or an overestimate.

$$\frac{d^2y}{dx^2}(0) = 6(0) + 9(-2) - 1 < 0$$
, concave down, so -20.35546875 is an overestimate.

(d) (2 points) Let y = g(x) be another solution to the differential equation $\frac{dy}{dx} = 2x + 3y - 1$ with the initial condition g(0) = k, where k is a constant. Euler's method, starting at x = 0 with a step size of 1, gives the approximation $g(1) \approx 0$. Find the value of k.

 $g(1)\approx g(0)+g'(0)*dx$ Since dx=1 and g'(0)=2*0+3*k-1=3k-1 we have $g(1)\approx k+(3k-1)(1)=0,$ Hence $k=\frac{1}{4}$

Bonus (2 points): Find the values of the constants m, b and r for which $y = mx + b + e^{rx}$ is a solution to the differential equation $\frac{dy}{dx} = 2x + 3y - 1$

If $y = mx + b + e^{rx}$ is a solution, then $m + re^{rx} = 2x + 3(mx + b + e^{rx}) - 1$ If $r \neq 0$, then m = 3b - 1, r = 3, 0 = 2 + 3m so $m = -\frac{2}{3}$, r = 3 and $b = \frac{1}{9}$ If r = 0, then m = 3b + 2, r = 0, 0 = 2 + 3m so $m = -\frac{2}{3}$, r = 0, $b = \frac{4}{9}$