Name:



NO calculator Section (Must be turned in before Calculators): 2 Free Response questions (15 minutes each = 30 min); 14 Multiple choice questions (2 minutes a question = 28 min).

Calculator Section: 1 Free Response question (15 minutes ); 5 Multiple choice questions (15 minutes). 100 points for the Multiple choice, 100 points for the free response, the 2 quarter exams are worth 15% of your grade. For choice (f) fill the (a) and (b) bubbles of your scantron.

NC-I. Let 
$$a_n = \frac{1}{n \ln n}$$
 for  $n \ge 3$ .

(a) Let f be the function given by  $f(x) = \frac{1}{x \ln x}$ . For  $x \ge 3$ , f is continuous, decreasing, and positive.

Use either the integral test or the comparison test to show that  $\sum_{n=3}^{\infty} a_n$  diverges.

(b) Consider the infinite series  $\sum_{n=3}^{\infty} (-1)^{n+1} a_n = \frac{1}{3\ln 3} - \frac{1}{4\ln 4} + \frac{1}{5\ln 5} - \cdots$  Identify properties of this series that guarentee the series converges. Explain why the sum of this eries is less than  $\frac{1}{3}$ .

(c) Find the interval of convergence of the power series  $\sum_{n=3}^{\infty} \frac{(x-2)^{n+1}}{n \ln n}$ 

NC-II. The function f satisfies the equation

$$f'(x) = f(x) + x + 1$$

and f(0) = 2. The Taylor series for f about x = 0 converges to f(x) for all x.

(a) Write an equation for the line tangent to the curve y = f(x) at the point where x = 0.

(b) Find f''(0) and find the second-degree Taylor polynomial for f about x = 0.

(c) Find the fourth degree Taylor polynomial for f about x = 0.

(d) Find  $f^{(n)}(0)$ , the *n*th derivative of f at x = 0, for  $n \ge 2$ . Use the Taylor series for f about x = 0 and the Taylor series for  $e^x$  about x = 0 to find a polynomial expression for  $f(x) = 4e^x$ 

## For choice (f) fill the (a) and (b) bubbles of your scantron.

1. 
$$\lim_{x \to 0} \frac{x^2}{1 - \cos x}$$
 is  
(a) -2

- (b) 0
- (c) 1
- (d) 2
- (e) nonexistant
- (f) None of these

2. 
$$\int \frac{1}{x^2 - 7x + 10} dx$$
  
(a)  $\ln |(x - 2)(x - 5)| + C$   
(b)  $\frac{1}{3} \ln |(x - 2)(x - 5)| + C$   
(c)  $\frac{1}{3} \ln \left| \frac{2x - 7}{(x - 2)(x - 5)} \right| + C$   
(d)  $\frac{1}{3} \ln \left| \frac{x - 2}{x - 5} \right| + C$   
(e)  $\frac{1}{3} \ln \left| \frac{x - 5}{x - 2} \right| + C$   
(f) None of these

- 3. The infinite series  $\sum_{k=1}^{\infty} a_k$  has *n*th partial sum  $S_n = (-1)^{n+1}$  for  $n \ge 1$ . What is the sum of the series?
  - (a) -1
  - (b) 0
  - (c)  $\frac{1}{2}$
  - (d) 1
  - (e) The series diverges.
  - (f) None of these
- 4. What is the sum of the series  $\sum_{n=1}^{\infty} \frac{(-2)^n}{e^{n+1}}$ ?
  - (a)  $\frac{-2}{e^2 2e}$ (b)  $\frac{-2}{e^2 + 2e}$ (c)  $\frac{-2}{e+2}$

  - (d)  $\frac{e}{e+2}$
  - (e) The series diverges
  - (f) None of these
- 5. Let  $P(x) = 3 3x^2 + 6x^4$  be the fourth-degree Taylor polynomial for the function f about x = 0. What is the value of  $f^{(4)}(0)$ ?
  - (a) 0
  - (b)  $\frac{1}{4}$

  - (c) 6
  - (d) 24
  - (e) 144
  - (f) None of these

6. Which of the following is the Maclaurin series for  $e^{3x}$ ?

(a) 
$$1 + x + \frac{x^2}{2} + \frac{x^3}{3!} + \frac{x^4}{4!} + \cdots$$
  
(b)  $3 + 9x + \frac{27x^2}{2} + \frac{81x^3}{3!} + \frac{243x^4}{4!} + \cdots$   
(c)  $1 - 3x + \frac{9x^2}{2} - \frac{27x^3}{3!} + \frac{81x^4}{4!} - \cdots$   
(d)  $1 + 3x + \frac{3x^2}{2} + \frac{3x^3}{3!} + \frac{3x^4}{4!} + \cdots$   
(e)  $1 + 3x + \frac{9x^2}{2} + \frac{27x^3}{3!} + \frac{81x^4}{4!} + \cdots$ 

| x     | 1 | 3 | 5 | 7  |
|-------|---|---|---|----|
| f(x)  | 4 | 6 | 7 | 5  |
| f'(x) | 2 | 1 | 0 | -1 |

- 7. The table above gives selected values for a differentiable function f and its first derivative. Using a left Riemann sum with three subintervals of equal length, which of the following is an approximation of the length of the graph of f on the interval [1,7]?
  - (a) 6
  - (b) 34
  - (c)  $2\sqrt{3} + 2\sqrt{2} + 2$
  - (d)  $2\sqrt{5} + 2\sqrt{2} + 2$
  - (e)  $2\sqrt{5} + 4\sqrt{2} + 2$
  - (f) None of these

8. What is the interval of convergence of the power series  $\sum_{n=1}^{\infty} \frac{(x-3)^n}{n \cdot 2^n}$ 

- (a) 1 < x < 5
- (b)  $1 \le x < 5$
- (c)  $1 \le x \le 5$
- (d) 2 < x < 4
- (e)  $2 \le x \le 4$
- (f) None of these

9. Which of the following series converge?

I. 
$$1 + (-1) + 1 + \dots + (-1)^{n-1} + \dots$$
  
II.  $1 + \frac{1}{3} + \frac{1}{5} + \dots + \frac{1}{2n-1} + \dots$   
III.  $1 + \frac{1}{3} + \frac{1}{3^2} + \dots + \frac{1}{3^{n-1}} + \dots$   
(a) I only  
(b) II only  
(c) III only  
(d) II and III only

(e) I, II, and III  $\,$ 

- (f) None of these
- 10. What is the coefficient of  $x^2$  in the Taylor series for  $\sin^2 x$  about x = 0?
  - (a) -2
  - (b) -1
  - (c) 0
  - (d) 1
  - (e) 2
  - (f) None of these

11. If  $\lim_{h \to 0} \frac{\arcsin(a+h) - \arcsin(a)}{h} = 2$ , which of the following could be the value of a? (a)  $\frac{\sqrt{2}}{2}$ (b)  $\frac{\sqrt{3}}{2}$ (c)  $\sqrt{3}$ (d)  $\frac{1}{2}$ (e) 2

(f) None of these



- (f) None of these
- 13. A population y changes at a rate modeled by the differential equation  $\frac{dy}{dx} = 0.2y(1000 y)$ , where t is measured in years. What are all the values of y for which the population is increasing at a decreasing rate?
  - (a) 500 only
  - (b) 0 < y < 500 only
  - (c) 500 < y < 1000 only
  - (d) 0 < y < 1000
  - (e) y > 1000
  - (f) None of these

14. What are all values of x for which the series  $\sum_{n=1}^{\infty} \frac{(-1)^n}{n} \left(x + \frac{3}{2}\right)^n$  converges?

(a)  $-\frac{5}{2} < x < -\frac{1}{2}$ (b)  $-\frac{5}{2} < x \le -\frac{1}{2}$ (c)  $-\frac{5}{2} \le x < -\frac{1}{2}$ (d)  $-\frac{1}{2} < x < \frac{1}{2}$ (e)  $x \le -\frac{1}{2}$ (f) None of these

## Calculators may be used for the following Questions

| x   | f'(x) |
|-----|-------|
| 1   | 0.2   |
| 1.5 | 0.5   |
| 2.0 | 0.9   |

- 15. The table above gives values of f', the derivative of a function f. If f(1) = 4, what is the approximation to f(2) obtained by Euler's method with a step size of 0.5?
  - (a) 2.35
  - (b) 3.65
  - (c) 4.35
  - (d) 4.70
  - (e) 4.80
  - (f) None of these

16. If  $0 < b_n < a_n$  for  $n \ge 1$ , which of the following must be true?

St. Francis High School

| x      | 2 | 4  |
|--------|---|----|
| f(x)   | 7 | 13 |
| g(x)   | 2 | 9  |
| g'(x)  | 1 | 7  |
| g''(x) | 5 | 8  |

17. The table above gives selected values of twice differentiable functions f and g, as well as the first two derivatives of g. If f'(x) = 3 for all values of x, what is the value of  $\int_{2}^{4} f(x)g''(x) dx$ ?

- (a) 63
- (b) 69
- (c) 78
- (d) 84
- (e) 103
- (f) None of these

## 18. $\lim_{x \to 0} (1+2x)^{\csc x}$

- (a) 0
- (b) 1
- (c) 2
- (d) *e*
- (e)  $e^2$
- (f) None of these

19. If 
$$f(x) = \sum_{k=1}^{\infty} (\sin^2 x)^k$$
, then  $f(1)$  is  
(a) 0.369  
(b) 0.585  
(c) 2.400  
(d) 2.426  
(e) 3.426

(f) None of these

- 20. The function f has a Taylor series about x = 2 that converges to f(x) for all x in the interval of convergence. The *n*th derivative of f at x = 2 is given by  $f^{(n)}(2) = \frac{(n+1)!}{3^n}$  for  $n \ge 1$ , and f(2) = 1.
  - (a) Write the first four terms and the general term of the Taylor series for f about x = 2.

(b) Find the radius of convergence for the Taylor series for f about x = 2. Show the work that led to your answer.

(c) Let g be a function satisfying g(2) = 3 and g'(x) = f(x) for all x. Write the first four terms and the general term of the Taylor series for g about x = 2.

(d) Does the Taylor series for g as defined in part (c) converge at x = -2? Give a reason for your answer