Free Response-Calculators Permitted

- C-I. Let $f(x) = e^{2x}$. Let R be the region in the first quadrant bounded by the graph of f, the coordinate axes, and the vertical line x = k, where k > 0. The region R is shown in the figure.
 - (a) Write, but do not evaluate, an expression involving an integral that gives the perimeter of R in terms of k.

(b) The region R is rotated about the x-axis to form a solid. Find the surface area, S, of the solid in terms of k. *Hint*: The surface area is 2π times an integral that looks a lot like the arc length integral, the only difference is that it should be multiplied by the changing radius.

AP Calc BC Exam 1 Part 2 Name:	Block:	Seat:
_		

	-dk	1.	dS .	. 1
(c) The surface area S, found in part (b) changes as k changes.	If $-$ =	= _, determi	ne — whe	$\operatorname{en} k = -$
	dt	3	dt	2

15.

		$\lim_{x \to 0^+}$	$\frac{1+\sin x}{x}$	=
(a)	0			
(b)	1			
(c)	2			
(d)	π			
(e)	∞			

(f) None of these

16. If $\frac{dy}{dx} = 2x + y$ and y(1) = 3, use Euler's method with step size 0.2 to approximate y(1.4)

- (a) 3.40
- (b) 4.00
- (c) 5.20
- (d) 5.28
- (e) 6.40
- (f) None of these
- 17. If the length of the graph of y = f(x) on the interval [0, 1] is

- (b) $6e^{3x}$ (c) $12e^{3x}$
- (d) e^{6x}
- (e) $6e^{6x}$
- (f) None of these

18.

$$\int x^2 \ln x \, dx =$$
(a) $\frac{x^2}{2} + C$
(b) $\frac{x^3}{3} \ln x - \frac{x^3}{3} + C$
(c) $\frac{x^3}{3} \ln x - \frac{x^3}{9} + C$
(d) $\frac{x^3}{3} \ln x - \frac{x^4}{12} + C$
(e) $\frac{x^3}{3} \ln x + \frac{x^4}{12} + C$
(f) None of these

19.

$$\int x^3 \sin(x^2) \, dx =$$

(a)
$$2x - \frac{1}{2}\cos(x^2) + C$$

(b)
$$\frac{1}{2} \left(x^2 \cos(x^2) - \sin(x^2) \right) + C$$

(c)
$$-\frac{1}{2} \left(x^2 \cos(x^2) - \sin(x^2) \right) + C$$

(d)
$$x^2 \cos(x^2) - \sin(x^2) + C$$

(e)
$$x^2 \cos(x^2) + \sin(x^2) + C$$